Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
chriscanal
commited on
Commit
·
8e47868
1
Parent(s):
75297e7
Updated app.py to fix conflict and changed name of tab per Clémentine Fourrier's request
Browse files
app.py
CHANGED
@@ -1,11 +1,12 @@
|
|
1 |
import json
|
2 |
import os
|
|
|
3 |
from datetime import datetime, timezone
|
4 |
|
5 |
import gradio as gr
|
6 |
import pandas as pd
|
7 |
from apscheduler.schedulers.background import BackgroundScheduler
|
8 |
-
from huggingface_hub import HfApi
|
9 |
|
10 |
from src.assets.css_html_js import custom_css, get_window_url_params
|
11 |
from src.assets.text_content import (
|
@@ -24,6 +25,7 @@ from src.display_models.plot_results import (
|
|
24 |
HUMAN_BASELINES,
|
25 |
)
|
26 |
from src.display_models.get_model_metadata import DO_NOT_SUBMIT_MODELS, ModelType
|
|
|
27 |
from src.display_models.utils import (
|
28 |
AutoEvalColumn,
|
29 |
EvalQueueColumn,
|
@@ -32,7 +34,8 @@ from src.display_models.utils import (
|
|
32 |
styled_message,
|
33 |
styled_warning,
|
34 |
)
|
35 |
-
from src.
|
|
|
36 |
from src.rate_limiting import user_submission_permission
|
37 |
|
38 |
pd.set_option("display.precision", 1)
|
@@ -60,6 +63,7 @@ api = HfApi(token=H4_TOKEN)
|
|
60 |
def restart_space():
|
61 |
api.restart_space(repo_id="HuggingFaceH4/open_llm_leaderboard", token=H4_TOKEN)
|
62 |
|
|
|
63 |
# Rate limit variables
|
64 |
RATE_LIMIT_PERIOD = 7
|
65 |
RATE_LIMIT_QUOTA = 5
|
@@ -87,39 +91,23 @@ BENCHMARK_COLS = [
|
|
87 |
]
|
88 |
]
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
)
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
PRIVATE_RESULTS_REPO,
|
99 |
-
EVAL_REQUESTS_PATH_PRIVATE,
|
100 |
-
EVAL_RESULTS_PATH_PRIVATE,
|
101 |
-
)
|
102 |
-
else:
|
103 |
-
eval_queue_private, eval_results_private = None, None
|
104 |
|
105 |
-
|
106 |
-
models = original_df["model_name_for_query"].tolist() # needed for model backlinks in their to the leaderboard
|
107 |
plot_df = create_plot_df(create_scores_df(join_model_info_with_results(original_df)))
|
108 |
to_be_dumped = f"models = {repr(models)}\n"
|
109 |
|
110 |
-
# with open("models_backlinks.py", "w") as f:
|
111 |
-
# f.write(to_be_dumped)
|
112 |
-
|
113 |
-
# print(to_be_dumped)
|
114 |
-
|
115 |
-
leaderboard_df = original_df.copy()
|
116 |
(
|
117 |
finished_eval_queue_df,
|
118 |
running_eval_queue_df,
|
119 |
pending_eval_queue_df,
|
120 |
-
) = get_evaluation_queue_df(
|
121 |
-
|
122 |
-
print(leaderboard_df["Precision"].unique())
|
123 |
|
124 |
|
125 |
## INTERACTION FUNCTIONS
|
@@ -135,18 +123,25 @@ def add_new_eval(
|
|
135 |
precision = precision.split(" ")[0]
|
136 |
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
137 |
|
|
|
|
|
|
|
|
|
138 |
num_models_submitted_in_period = user_submission_permission(model, users_to_submission_dates, RATE_LIMIT_PERIOD)
|
139 |
if num_models_submitted_in_period > RATE_LIMIT_QUOTA:
|
140 |
error_msg = f"Organisation or user `{model.split('/')[0]}`"
|
141 |
error_msg += f"already has {num_models_submitted_in_period} model requests submitted to the leaderboard "
|
142 |
error_msg += f"in the last {RATE_LIMIT_PERIOD} days.\n"
|
143 |
-
error_msg +=
|
|
|
|
|
144 |
return styled_error(error_msg)
|
145 |
|
146 |
-
|
147 |
-
|
|
|
148 |
|
149 |
-
#
|
150 |
if revision == "":
|
151 |
revision = "main"
|
152 |
|
@@ -160,7 +155,34 @@ def add_new_eval(
|
|
160 |
if not model_on_hub:
|
161 |
return styled_error(f'Model "{model}" {error}')
|
162 |
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
eval_entry = {
|
166 |
"model": model,
|
@@ -172,6 +194,9 @@ def add_new_eval(
|
|
172 |
"status": "PENDING",
|
173 |
"submitted_time": current_time,
|
174 |
"model_type": model_type,
|
|
|
|
|
|
|
175 |
}
|
176 |
|
177 |
user_name = ""
|
@@ -180,14 +205,11 @@ def add_new_eval(
|
|
180 |
user_name = model.split("/")[0]
|
181 |
model_path = model.split("/")[1]
|
182 |
|
|
|
183 |
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
184 |
os.makedirs(OUT_DIR, exist_ok=True)
|
185 |
out_path = f"{OUT_DIR}/{model_path}_eval_request_{private}_{precision}_{weight_type}.json"
|
186 |
|
187 |
-
# Check if the model has been forbidden:
|
188 |
-
if out_path.split("eval-queue/")[1] in DO_NOT_SUBMIT_MODELS:
|
189 |
-
return styled_warning("Model authors have requested that their model be not submitted on the leaderboard.")
|
190 |
-
|
191 |
# Check for duplicate submission
|
192 |
if f"{model}_{revision}_{precision}" in requested_models:
|
193 |
return styled_warning("This model has been already submitted.")
|
@@ -195,6 +217,7 @@ def add_new_eval(
|
|
195 |
with open(out_path, "w") as f:
|
196 |
f.write(json.dumps(eval_entry))
|
197 |
|
|
|
198 |
api.upload_file(
|
199 |
path_or_fileobj=out_path,
|
200 |
path_in_repo=out_path.split("eval-queue/")[1],
|
@@ -203,7 +226,7 @@ def add_new_eval(
|
|
203 |
commit_message=f"Add {model} to eval queue",
|
204 |
)
|
205 |
|
206 |
-
#
|
207 |
os.remove(out_path)
|
208 |
|
209 |
return styled_message(
|
@@ -223,17 +246,25 @@ def change_tab(query_param: str):
|
|
223 |
|
224 |
|
225 |
# Searching and filtering
|
226 |
-
def update_table(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
228 |
-
|
229 |
-
filtered_df = search_table(filtered_df, query)
|
230 |
df = select_columns(filtered_df, columns)
|
231 |
-
|
232 |
return df
|
233 |
|
|
|
234 |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
235 |
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
236 |
|
|
|
237 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
238 |
always_here_cols = [
|
239 |
AutoEvalColumn.model_type_symbol.name,
|
@@ -245,16 +276,39 @@ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
|
245 |
]
|
246 |
return filtered_df
|
247 |
|
|
|
248 |
NUMERIC_INTERVALS = {
|
249 |
-
"
|
250 |
-
"
|
251 |
-
"~
|
252 |
-
"~
|
253 |
-
"~
|
254 |
-
"~
|
255 |
-
"
|
|
|
256 |
}
|
257 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
def filter_models(
|
259 |
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
|
260 |
) -> pd.DataFrame:
|
@@ -266,7 +320,7 @@ def filter_models(
|
|
266 |
|
267 |
type_emoji = [t[0] for t in type_query]
|
268 |
filtered_df = filtered_df[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
269 |
-
filtered_df = filtered_df[df[AutoEvalColumn.precision.name].isin(precision_query)]
|
270 |
|
271 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
272 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
@@ -287,7 +341,7 @@ with demo:
|
|
287 |
with gr.Column():
|
288 |
with gr.Row():
|
289 |
search_bar = gr.Textbox(
|
290 |
-
placeholder=" 🔍 Search for your model and press ENTER...",
|
291 |
show_label=False,
|
292 |
elem_id="search-bar",
|
293 |
)
|
@@ -332,12 +386,14 @@ with demo:
|
|
332 |
ModelType.FT.to_str(),
|
333 |
ModelType.IFT.to_str(),
|
334 |
ModelType.RL.to_str(),
|
|
|
335 |
],
|
336 |
value=[
|
337 |
ModelType.PT.to_str(),
|
338 |
ModelType.FT.to_str(),
|
339 |
ModelType.IFT.to_str(),
|
340 |
ModelType.RL.to_str(),
|
|
|
341 |
],
|
342 |
interactive=True,
|
343 |
elem_id="filter-columns-type",
|
@@ -350,12 +406,13 @@ with demo:
|
|
350 |
elem_id="filter-columns-precision",
|
351 |
)
|
352 |
filter_columns_size = gr.CheckboxGroup(
|
353 |
-
label="Model sizes",
|
354 |
choices=list(NUMERIC_INTERVALS.keys()),
|
355 |
value=list(NUMERIC_INTERVALS.keys()),
|
356 |
interactive=True,
|
357 |
elem_id="filter-columns-size",
|
358 |
)
|
|
|
359 |
leaderboard_table = gr.components.Dataframe(
|
360 |
value=leaderboard_df[
|
361 |
[AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name]
|
@@ -387,7 +444,6 @@ with demo:
|
|
387 |
update_table,
|
388 |
[
|
389 |
hidden_leaderboard_table_for_search,
|
390 |
-
leaderboard_table,
|
391 |
shown_columns,
|
392 |
filter_columns_type,
|
393 |
filter_columns_precision,
|
@@ -401,7 +457,6 @@ with demo:
|
|
401 |
update_table,
|
402 |
[
|
403 |
hidden_leaderboard_table_for_search,
|
404 |
-
leaderboard_table,
|
405 |
shown_columns,
|
406 |
filter_columns_type,
|
407 |
filter_columns_precision,
|
@@ -416,7 +471,6 @@ with demo:
|
|
416 |
update_table,
|
417 |
[
|
418 |
hidden_leaderboard_table_for_search,
|
419 |
-
leaderboard_table,
|
420 |
shown_columns,
|
421 |
filter_columns_type,
|
422 |
filter_columns_precision,
|
@@ -431,7 +485,6 @@ with demo:
|
|
431 |
update_table,
|
432 |
[
|
433 |
hidden_leaderboard_table_for_search,
|
434 |
-
leaderboard_table,
|
435 |
shown_columns,
|
436 |
filter_columns_type,
|
437 |
filter_columns_precision,
|
@@ -446,7 +499,6 @@ with demo:
|
|
446 |
update_table,
|
447 |
[
|
448 |
hidden_leaderboard_table_for_search,
|
449 |
-
leaderboard_table,
|
450 |
shown_columns,
|
451 |
filter_columns_type,
|
452 |
filter_columns_precision,
|
@@ -461,7 +513,6 @@ with demo:
|
|
461 |
update_table,
|
462 |
[
|
463 |
hidden_leaderboard_table_for_search,
|
464 |
-
leaderboard_table,
|
465 |
shown_columns,
|
466 |
filter_columns_type,
|
467 |
filter_columns_precision,
|
@@ -472,7 +523,8 @@ with demo:
|
|
472 |
leaderboard_table,
|
473 |
queue=True,
|
474 |
)
|
475 |
-
|
|
|
476 |
with gr.Row():
|
477 |
with gr.Column():
|
478 |
chart = create_metric_plot_obj(
|
@@ -556,13 +608,7 @@ with demo:
|
|
556 |
|
557 |
with gr.Column():
|
558 |
precision = gr.Dropdown(
|
559 |
-
choices=[
|
560 |
-
"float16",
|
561 |
-
"bfloat16",
|
562 |
-
"8bit (LLM.int8)",
|
563 |
-
"4bit (QLoRA / FP4)",
|
564 |
-
"GPTQ"
|
565 |
-
],
|
566 |
label="Precision",
|
567 |
multiselect=False,
|
568 |
value="float16",
|
@@ -598,8 +644,10 @@ with demo:
|
|
598 |
citation_button = gr.Textbox(
|
599 |
value=CITATION_BUTTON_TEXT,
|
600 |
label=CITATION_BUTTON_LABEL,
|
|
|
601 |
elem_id="citation-button",
|
602 |
-
|
|
|
603 |
|
604 |
dummy = gr.Textbox(visible=False)
|
605 |
demo.load(
|
|
|
1 |
import json
|
2 |
import os
|
3 |
+
import re
|
4 |
from datetime import datetime, timezone
|
5 |
|
6 |
import gradio as gr
|
7 |
import pandas as pd
|
8 |
from apscheduler.schedulers.background import BackgroundScheduler
|
9 |
+
from huggingface_hub import HfApi, snapshot_download
|
10 |
|
11 |
from src.assets.css_html_js import custom_css, get_window_url_params
|
12 |
from src.assets.text_content import (
|
|
|
25 |
HUMAN_BASELINES,
|
26 |
)
|
27 |
from src.display_models.get_model_metadata import DO_NOT_SUBMIT_MODELS, ModelType
|
28 |
+
from src.display_models.modelcard_filter import check_model_card
|
29 |
from src.display_models.utils import (
|
30 |
AutoEvalColumn,
|
31 |
EvalQueueColumn,
|
|
|
34 |
styled_message,
|
35 |
styled_warning,
|
36 |
)
|
37 |
+
from src.manage_collections import update_collections
|
38 |
+
from src.load_from_hub import get_all_requested_models, get_evaluation_queue_df, get_leaderboard_df, is_model_on_hub
|
39 |
from src.rate_limiting import user_submission_permission
|
40 |
|
41 |
pd.set_option("display.precision", 1)
|
|
|
63 |
def restart_space():
|
64 |
api.restart_space(repo_id="HuggingFaceH4/open_llm_leaderboard", token=H4_TOKEN)
|
65 |
|
66 |
+
|
67 |
# Rate limit variables
|
68 |
RATE_LIMIT_PERIOD = 7
|
69 |
RATE_LIMIT_QUOTA = 5
|
|
|
91 |
]
|
92 |
]
|
93 |
|
94 |
+
snapshot_download(repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None)
|
95 |
+
snapshot_download(repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None)
|
96 |
+
requested_models, users_to_submission_dates = get_all_requested_models(EVAL_REQUESTS_PATH)
|
|
|
97 |
|
98 |
+
original_df = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, BENCHMARK_COLS)
|
99 |
+
update_collections(original_df.copy())
|
100 |
+
leaderboard_df = original_df.copy()
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
+
models = original_df["model_name_for_query"].tolist() # needed for model backlinks in their to the leaderboard
|
|
|
103 |
plot_df = create_plot_df(create_scores_df(join_model_info_with_results(original_df)))
|
104 |
to_be_dumped = f"models = {repr(models)}\n"
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
(
|
107 |
finished_eval_queue_df,
|
108 |
running_eval_queue_df,
|
109 |
pending_eval_queue_df,
|
110 |
+
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
|
|
|
|
111 |
|
112 |
|
113 |
## INTERACTION FUNCTIONS
|
|
|
123 |
precision = precision.split(" ")[0]
|
124 |
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
125 |
|
126 |
+
if model_type is None or model_type == "":
|
127 |
+
return styled_error("Please select a model type.")
|
128 |
+
|
129 |
+
# Is the user rate limited?
|
130 |
num_models_submitted_in_period = user_submission_permission(model, users_to_submission_dates, RATE_LIMIT_PERIOD)
|
131 |
if num_models_submitted_in_period > RATE_LIMIT_QUOTA:
|
132 |
error_msg = f"Organisation or user `{model.split('/')[0]}`"
|
133 |
error_msg += f"already has {num_models_submitted_in_period} model requests submitted to the leaderboard "
|
134 |
error_msg += f"in the last {RATE_LIMIT_PERIOD} days.\n"
|
135 |
+
error_msg += (
|
136 |
+
"Please wait a couple of days before resubmitting, so that everybody can enjoy using the leaderboard 🤗"
|
137 |
+
)
|
138 |
return styled_error(error_msg)
|
139 |
|
140 |
+
# Did the model authors forbid its submission to the leaderboard?
|
141 |
+
if model in DO_NOT_SUBMIT_MODELS or base_model in DO_NOT_SUBMIT_MODELS:
|
142 |
+
return styled_warning("Model authors have requested that their model be not submitted on the leaderboard.")
|
143 |
|
144 |
+
# Does the model actually exist?
|
145 |
if revision == "":
|
146 |
revision = "main"
|
147 |
|
|
|
155 |
if not model_on_hub:
|
156 |
return styled_error(f'Model "{model}" {error}')
|
157 |
|
158 |
+
model_info = api.model_info(repo_id=model, revision=revision)
|
159 |
+
|
160 |
+
size_pattern = size_pattern = re.compile(r"(\d\.)?\d+(b|m)")
|
161 |
+
try:
|
162 |
+
model_size = round(model_info.safetensors["total"] / 1e9, 3)
|
163 |
+
except AttributeError:
|
164 |
+
try:
|
165 |
+
size_match = re.search(size_pattern, model.lower())
|
166 |
+
model_size = size_match.group(0)
|
167 |
+
model_size = round(float(model_size[:-1]) if model_size[-1] == "b" else float(model_size[:-1]) / 1e3, 3)
|
168 |
+
except AttributeError:
|
169 |
+
return 65
|
170 |
+
|
171 |
+
size_factor = 8 if (precision == "GPTQ" or "GPTQ" in model) else 1
|
172 |
+
model_size = size_factor * model_size
|
173 |
+
|
174 |
+
try:
|
175 |
+
license = model_info.cardData["license"]
|
176 |
+
except Exception:
|
177 |
+
license = "?"
|
178 |
+
|
179 |
+
# Were the model card and license filled?
|
180 |
+
modelcard_OK, error_msg = check_model_card(model)
|
181 |
+
if not modelcard_OK:
|
182 |
+
return styled_error(error_msg)
|
183 |
+
|
184 |
+
# Seems good, creating the eval
|
185 |
+
print("Adding new eval")
|
186 |
|
187 |
eval_entry = {
|
188 |
"model": model,
|
|
|
194 |
"status": "PENDING",
|
195 |
"submitted_time": current_time,
|
196 |
"model_type": model_type,
|
197 |
+
"likes": model_info.likes,
|
198 |
+
"params": model_size,
|
199 |
+
"license": license,
|
200 |
}
|
201 |
|
202 |
user_name = ""
|
|
|
205 |
user_name = model.split("/")[0]
|
206 |
model_path = model.split("/")[1]
|
207 |
|
208 |
+
print("Creating eval file")
|
209 |
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
210 |
os.makedirs(OUT_DIR, exist_ok=True)
|
211 |
out_path = f"{OUT_DIR}/{model_path}_eval_request_{private}_{precision}_{weight_type}.json"
|
212 |
|
|
|
|
|
|
|
|
|
213 |
# Check for duplicate submission
|
214 |
if f"{model}_{revision}_{precision}" in requested_models:
|
215 |
return styled_warning("This model has been already submitted.")
|
|
|
217 |
with open(out_path, "w") as f:
|
218 |
f.write(json.dumps(eval_entry))
|
219 |
|
220 |
+
print("Uploading eval file")
|
221 |
api.upload_file(
|
222 |
path_or_fileobj=out_path,
|
223 |
path_in_repo=out_path.split("eval-queue/")[1],
|
|
|
226 |
commit_message=f"Add {model} to eval queue",
|
227 |
)
|
228 |
|
229 |
+
# Remove the local file
|
230 |
os.remove(out_path)
|
231 |
|
232 |
return styled_message(
|
|
|
246 |
|
247 |
|
248 |
# Searching and filtering
|
249 |
+
def update_table(
|
250 |
+
hidden_df: pd.DataFrame,
|
251 |
+
columns: list,
|
252 |
+
type_query: list,
|
253 |
+
precision_query: str,
|
254 |
+
size_query: list,
|
255 |
+
show_deleted: bool,
|
256 |
+
query: str,
|
257 |
+
):
|
258 |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
259 |
+
filtered_df = filter_queries(query, filtered_df)
|
|
|
260 |
df = select_columns(filtered_df, columns)
|
|
|
261 |
return df
|
262 |
|
263 |
+
|
264 |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
265 |
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
266 |
|
267 |
+
|
268 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
269 |
always_here_cols = [
|
270 |
AutoEvalColumn.model_type_symbol.name,
|
|
|
276 |
]
|
277 |
return filtered_df
|
278 |
|
279 |
+
|
280 |
NUMERIC_INTERVALS = {
|
281 |
+
"?": pd.Interval(-1, 0, closed="right"),
|
282 |
+
"0~1.5": pd.Interval(0, 1.5, closed="right"),
|
283 |
+
"1.5~3": pd.Interval(1.5, 3, closed="right"),
|
284 |
+
"3~7": pd.Interval(3, 7, closed="right"),
|
285 |
+
"7~13": pd.Interval(7, 13, closed="right"),
|
286 |
+
"13~35": pd.Interval(13, 35, closed="right"),
|
287 |
+
"35~60": pd.Interval(35, 60, closed="right"),
|
288 |
+
"60+": pd.Interval(60, 10000, closed="right"),
|
289 |
}
|
290 |
|
291 |
+
|
292 |
+
def filter_queries(query: str, filtered_df: pd.DataFrame):
|
293 |
+
"""Added by Abishek"""
|
294 |
+
final_df = []
|
295 |
+
if query != "":
|
296 |
+
queries = [q.strip() for q in query.split(";")]
|
297 |
+
for _q in queries:
|
298 |
+
_q = _q.strip()
|
299 |
+
if _q != "":
|
300 |
+
temp_filtered_df = search_table(filtered_df, _q)
|
301 |
+
if len(temp_filtered_df) > 0:
|
302 |
+
final_df.append(temp_filtered_df)
|
303 |
+
if len(final_df) > 0:
|
304 |
+
filtered_df = pd.concat(final_df)
|
305 |
+
filtered_df = filtered_df.drop_duplicates(
|
306 |
+
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
|
307 |
+
)
|
308 |
+
|
309 |
+
return filtered_df
|
310 |
+
|
311 |
+
|
312 |
def filter_models(
|
313 |
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
|
314 |
) -> pd.DataFrame:
|
|
|
320 |
|
321 |
type_emoji = [t[0] for t in type_query]
|
322 |
filtered_df = filtered_df[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
323 |
+
filtered_df = filtered_df[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
324 |
|
325 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
326 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
|
|
341 |
with gr.Column():
|
342 |
with gr.Row():
|
343 |
search_bar = gr.Textbox(
|
344 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
345 |
show_label=False,
|
346 |
elem_id="search-bar",
|
347 |
)
|
|
|
386 |
ModelType.FT.to_str(),
|
387 |
ModelType.IFT.to_str(),
|
388 |
ModelType.RL.to_str(),
|
389 |
+
ModelType.Unknown.to_str(),
|
390 |
],
|
391 |
value=[
|
392 |
ModelType.PT.to_str(),
|
393 |
ModelType.FT.to_str(),
|
394 |
ModelType.IFT.to_str(),
|
395 |
ModelType.RL.to_str(),
|
396 |
+
ModelType.Unknown.to_str(),
|
397 |
],
|
398 |
interactive=True,
|
399 |
elem_id="filter-columns-type",
|
|
|
406 |
elem_id="filter-columns-precision",
|
407 |
)
|
408 |
filter_columns_size = gr.CheckboxGroup(
|
409 |
+
label="Model sizes (in billions of parameters)",
|
410 |
choices=list(NUMERIC_INTERVALS.keys()),
|
411 |
value=list(NUMERIC_INTERVALS.keys()),
|
412 |
interactive=True,
|
413 |
elem_id="filter-columns-size",
|
414 |
)
|
415 |
+
|
416 |
leaderboard_table = gr.components.Dataframe(
|
417 |
value=leaderboard_df[
|
418 |
[AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name]
|
|
|
444 |
update_table,
|
445 |
[
|
446 |
hidden_leaderboard_table_for_search,
|
|
|
447 |
shown_columns,
|
448 |
filter_columns_type,
|
449 |
filter_columns_precision,
|
|
|
457 |
update_table,
|
458 |
[
|
459 |
hidden_leaderboard_table_for_search,
|
|
|
460 |
shown_columns,
|
461 |
filter_columns_type,
|
462 |
filter_columns_precision,
|
|
|
471 |
update_table,
|
472 |
[
|
473 |
hidden_leaderboard_table_for_search,
|
|
|
474 |
shown_columns,
|
475 |
filter_columns_type,
|
476 |
filter_columns_precision,
|
|
|
485 |
update_table,
|
486 |
[
|
487 |
hidden_leaderboard_table_for_search,
|
|
|
488 |
shown_columns,
|
489 |
filter_columns_type,
|
490 |
filter_columns_precision,
|
|
|
499 |
update_table,
|
500 |
[
|
501 |
hidden_leaderboard_table_for_search,
|
|
|
502 |
shown_columns,
|
503 |
filter_columns_type,
|
504 |
filter_columns_precision,
|
|
|
513 |
update_table,
|
514 |
[
|
515 |
hidden_leaderboard_table_for_search,
|
|
|
516 |
shown_columns,
|
517 |
filter_columns_type,
|
518 |
filter_columns_precision,
|
|
|
523 |
leaderboard_table,
|
524 |
queue=True,
|
525 |
)
|
526 |
+
|
527 |
+
with gr.TabItem("📈 Metrics evolution through time", elem_id="llm-benchmark-tab-table", id=4):
|
528 |
with gr.Row():
|
529 |
with gr.Column():
|
530 |
chart = create_metric_plot_obj(
|
|
|
608 |
|
609 |
with gr.Column():
|
610 |
precision = gr.Dropdown(
|
611 |
+
choices=["float16", "bfloat16", "8bit (LLM.int8)", "4bit (QLoRA / FP4)", "GPTQ"],
|
|
|
|
|
|
|
|
|
|
|
|
|
612 |
label="Precision",
|
613 |
multiselect=False,
|
614 |
value="float16",
|
|
|
644 |
citation_button = gr.Textbox(
|
645 |
value=CITATION_BUTTON_TEXT,
|
646 |
label=CITATION_BUTTON_LABEL,
|
647 |
+
lines=20,
|
648 |
elem_id="citation-button",
|
649 |
+
show_copy_button=True,
|
650 |
+
)
|
651 |
|
652 |
dummy = gr.Textbox(visible=False)
|
653 |
demo.load(
|