Spaces:
Running
Running
Commit
•
a40ca17
1
Parent(s):
37d4b84
initial commit
Browse files- Makefile +13 -0
- README.md +7 -6
- app.py +90 -0
- packages.txt +3 -0
- pyproject.toml +15 -0
- requirements.txt +24 -0
- src/backend.py +90 -0
- src/evaluation.py +365 -0
- src/logging.py +37 -0
Makefile
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.PHONY: style format
|
2 |
+
|
3 |
+
|
4 |
+
style:
|
5 |
+
python -m black --line-length 119 src app.py
|
6 |
+
python -m isort src app.py
|
7 |
+
ruff check --fix src app.py
|
8 |
+
|
9 |
+
|
10 |
+
quality:
|
11 |
+
python -m black --check --line-length 119 src app.py
|
12 |
+
python -m isort --check-only src app.py
|
13 |
+
ruff check src app.py
|
README.md
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
---
|
2 |
title: Backend
|
3 |
-
emoji:
|
4 |
colorFrom: red
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
-
pinned:
|
|
|
|
|
|
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
title: Backend
|
3 |
+
emoji: 🥇
|
4 |
colorFrom: red
|
5 |
+
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.20.0
|
8 |
app_file: app.py
|
9 |
+
pinned: true
|
10 |
+
license: apache-2.0
|
11 |
+
tags:
|
12 |
+
- leaderboard
|
13 |
---
|
|
|
|
app.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from functools import partial
|
3 |
+
from io import StringIO
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
7 |
+
from bs4 import BeautifulSoup
|
8 |
+
from rich.console import Console
|
9 |
+
from rich.syntax import Syntax
|
10 |
+
|
11 |
+
from src.backend import backend_routine
|
12 |
+
from src.logging import configure_root_logger, log_file, setup_logger
|
13 |
+
|
14 |
+
logging.getLogger("httpx").setLevel(logging.WARNING)
|
15 |
+
logging.getLogger("numexpr").setLevel(logging.WARNING)
|
16 |
+
logging.getLogger("absl").setLevel(logging.WARNING)
|
17 |
+
|
18 |
+
configure_root_logger()
|
19 |
+
|
20 |
+
logging.basicConfig(level=logging.INFO)
|
21 |
+
logger = setup_logger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
def log_file_to_html_string(reverse=True):
|
25 |
+
with open(log_file, "rt") as f:
|
26 |
+
lines = f.readlines()
|
27 |
+
lines = lines[-300:]
|
28 |
+
|
29 |
+
if reverse:
|
30 |
+
lines = reversed(lines)
|
31 |
+
|
32 |
+
output = "".join(lines)
|
33 |
+
syntax = Syntax(output, "python", theme="monokai", word_wrap=True)
|
34 |
+
|
35 |
+
console = Console(record=True, width=150, style="#272822", file=StringIO())
|
36 |
+
console.print(syntax)
|
37 |
+
html_content = console.export_html(inline_styles=True)
|
38 |
+
|
39 |
+
# Parse the HTML content using BeautifulSoup
|
40 |
+
soup = BeautifulSoup(html_content, "lxml")
|
41 |
+
|
42 |
+
# Modify the <pre> tag and add custom styles
|
43 |
+
pre_tag = soup.pre
|
44 |
+
pre_tag["class"] = "scrollable"
|
45 |
+
del pre_tag["style"]
|
46 |
+
|
47 |
+
# Add your custom styles and the .scrollable CSS to the <style> tag
|
48 |
+
style_tag = soup.style
|
49 |
+
style_tag.append(
|
50 |
+
"""
|
51 |
+
pre, code {
|
52 |
+
background-color: #272822;
|
53 |
+
}
|
54 |
+
.scrollable {
|
55 |
+
font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace;
|
56 |
+
height: 500px;
|
57 |
+
overflow: auto;
|
58 |
+
}
|
59 |
+
"""
|
60 |
+
)
|
61 |
+
|
62 |
+
return soup.prettify()
|
63 |
+
|
64 |
+
|
65 |
+
REPO_ID = "open-rl-leaderboard/leaderboard"
|
66 |
+
RESULTS_REPO = "open-rl-leaderboard/results_v2"
|
67 |
+
|
68 |
+
|
69 |
+
links_md = f"""
|
70 |
+
# Important links
|
71 |
+
| Description | Link |
|
72 |
+
|-----------------|------|
|
73 |
+
| Leaderboard | [{REPO_ID}](https://huggingface.co/spaces/{REPO_ID}) |
|
74 |
+
| Results Repo | [{RESULTS_REPO}](https://huggingface.co/datasets/{RESULTS_REPO}) |
|
75 |
+
"""
|
76 |
+
|
77 |
+
|
78 |
+
with gr.Blocks() as demo:
|
79 |
+
gr.Markdown(links_md)
|
80 |
+
gr.HTML(partial(log_file_to_html_string), every=1)
|
81 |
+
with gr.Row():
|
82 |
+
gr.DownloadButton("Download Log File", value=log_file)
|
83 |
+
|
84 |
+
|
85 |
+
scheduler = BackgroundScheduler()
|
86 |
+
scheduler.add_job(func=backend_routine, trigger="interval", seconds=5 * 60, max_instances=1)
|
87 |
+
scheduler.start()
|
88 |
+
|
89 |
+
if __name__ == "__main__":
|
90 |
+
demo.queue().launch()
|
packages.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
swig
|
2 |
+
libosmesa6-dev
|
3 |
+
patchelf
|
pyproject.toml
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[tool.ruff]
|
2 |
+
line-length = 119
|
3 |
+
|
4 |
+
[tool.ruff.lint]
|
5 |
+
# Enable pycodestyle (`E`) and Pyflakes (`F`) codes by default.
|
6 |
+
select = ["E", "F"]
|
7 |
+
ignore = ["E501"] # line too long (black is taking care of this)
|
8 |
+
fixable = ["A", "B", "C", "D", "E", "F", "G", "I", "N", "Q", "S", "T", "W", "ANN", "ARG", "BLE", "COM", "DJ", "DTZ", "EM", "ERA", "EXE", "FBT", "ICN", "INP", "ISC", "NPY", "PD", "PGH", "PIE", "PL", "PT", "PTH", "PYI", "RET", "RSE", "RUF", "SIM", "SLF", "TCH", "TID", "TRY", "UP", "YTT"]
|
9 |
+
|
10 |
+
[tool.isort]
|
11 |
+
profile = "black"
|
12 |
+
line_length = 119
|
13 |
+
|
14 |
+
[tool.black]
|
15 |
+
line-length = 119
|
requirements.txt
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
APScheduler==3.10.1
|
2 |
+
black==23.11.0
|
3 |
+
click==8.1.3
|
4 |
+
datasets==2.14.5
|
5 |
+
gradio==4.20.0
|
6 |
+
gradio_client
|
7 |
+
gymnasium[all,accept-rom-license]==0.29.1
|
8 |
+
huggingface-hub>=0.18.0
|
9 |
+
matplotlib==3.7.1
|
10 |
+
free-mujoco-py
|
11 |
+
mujoco<=2.3.7
|
12 |
+
numpy==1.24.2
|
13 |
+
pandas==2.0.0
|
14 |
+
python-dateutil==2.8.2
|
15 |
+
requests==2.28.2
|
16 |
+
rliable==1.0.8
|
17 |
+
torch==2.2.2
|
18 |
+
tqdm==4.65.0
|
19 |
+
|
20 |
+
|
21 |
+
# Log Visualizer
|
22 |
+
BeautifulSoup4==4.12.2
|
23 |
+
lxml==4.9.3
|
24 |
+
rich==13.3.4
|
src/backend.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import re
|
5 |
+
import tempfile
|
6 |
+
|
7 |
+
from huggingface_hub import CommitOperationAdd, HfApi
|
8 |
+
|
9 |
+
from src.evaluation import evaluate
|
10 |
+
from src.logging import setup_logger
|
11 |
+
|
12 |
+
logger = setup_logger(__name__)
|
13 |
+
|
14 |
+
API = HfApi(token=os.environ.get("TOKEN"))
|
15 |
+
RESULTS_REPO = "open-rl-leaderboard/results"
|
16 |
+
|
17 |
+
|
18 |
+
def _backend_routine():
|
19 |
+
# List only the text classification models
|
20 |
+
rl_models = list(API.list_models(filter="reinforcement-learning"))
|
21 |
+
logger.info(f"Found {len(rl_models)} RL models")
|
22 |
+
compatible_models = []
|
23 |
+
for model in rl_models:
|
24 |
+
filenames = [sib.rfilename for sib in model.siblings]
|
25 |
+
if "agent.pt" in filenames:
|
26 |
+
compatible_models.append((model.modelId, model.sha))
|
27 |
+
|
28 |
+
logger.info(f"Found {len(compatible_models)} compatible models")
|
29 |
+
|
30 |
+
# Get the results
|
31 |
+
pattern = re.compile(r"^[^/]*/[^/]*/[^/]*results_[a-f0-9]+\.json$")
|
32 |
+
filenames = API.list_repo_files(RESULTS_REPO, repo_type="dataset")
|
33 |
+
filenames = [filename for filename in filenames if pattern.match(filename)]
|
34 |
+
|
35 |
+
evaluated_models = set()
|
36 |
+
for filename in filenames:
|
37 |
+
path = API.hf_hub_download(repo_id=RESULTS_REPO, filename=filename, repo_type="dataset")
|
38 |
+
with open(path) as fp:
|
39 |
+
report = json.load(fp)
|
40 |
+
evaluated_models.add((report["config"]["model_id"], report["config"]["model_sha"]))
|
41 |
+
|
42 |
+
# Find the models that are not associated with any results
|
43 |
+
pending_models = list(set(compatible_models) - evaluated_models)
|
44 |
+
logger.info(f"Found {len(pending_models)} pending models")
|
45 |
+
|
46 |
+
if len(pending_models) == 0:
|
47 |
+
return None
|
48 |
+
|
49 |
+
# Run an evaluation on the models
|
50 |
+
with tempfile.TemporaryDirectory() as tmp_dir:
|
51 |
+
commits = []
|
52 |
+
model_id, sha = random.choice(pending_models)
|
53 |
+
logger.info(f"Running evaluation on {model_id}")
|
54 |
+
report = {"config": {"model_id": model_id, "model_sha": sha}}
|
55 |
+
try:
|
56 |
+
evaluations = evaluate(model_id, revision=sha)
|
57 |
+
except Exception as e:
|
58 |
+
logger.error(f"Error evaluating {model_id}: {e}")
|
59 |
+
evaluations = None
|
60 |
+
|
61 |
+
if evaluations is not None:
|
62 |
+
report["results"] = evaluations
|
63 |
+
report["status"] = "DONE"
|
64 |
+
else:
|
65 |
+
report["status"] = "FAILED"
|
66 |
+
|
67 |
+
# Update the results
|
68 |
+
dumped = json.dumps(report, indent=2)
|
69 |
+
path_in_repo = f"{model_id}/results_{sha}.json"
|
70 |
+
local_path = os.path.join(tmp_dir, path_in_repo)
|
71 |
+
os.makedirs(os.path.dirname(local_path), exist_ok=True)
|
72 |
+
with open(local_path, "w") as f:
|
73 |
+
f.write(dumped)
|
74 |
+
|
75 |
+
commits.append(CommitOperationAdd(path_in_repo=path_in_repo, path_or_fileobj=local_path))
|
76 |
+
|
77 |
+
API.create_commit(
|
78 |
+
repo_id=RESULTS_REPO, commit_message="Add evaluation results", operations=commits, repo_type="dataset"
|
79 |
+
)
|
80 |
+
|
81 |
+
|
82 |
+
def backend_routine():
|
83 |
+
try:
|
84 |
+
_backend_routine()
|
85 |
+
except Exception as e:
|
86 |
+
logger.error(f"{e.__class__.__name__}: {str(e)}")
|
87 |
+
|
88 |
+
|
89 |
+
if __name__ == "__main__":
|
90 |
+
backend_routine()
|
src/evaluation.py
ADDED
@@ -0,0 +1,365 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import fnmatch
|
2 |
+
import os
|
3 |
+
from typing import Dict, SupportsFloat
|
4 |
+
|
5 |
+
import gymnasium as gym
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
from gymnasium import wrappers
|
9 |
+
from huggingface_hub import HfApi
|
10 |
+
from huggingface_hub.utils._errors import EntryNotFoundError
|
11 |
+
|
12 |
+
from src.logging import setup_logger
|
13 |
+
|
14 |
+
logger = setup_logger(__name__)
|
15 |
+
|
16 |
+
API = HfApi(token=os.environ.get("TOKEN"))
|
17 |
+
|
18 |
+
|
19 |
+
ALL_ENV_IDS = [
|
20 |
+
"AdventureNoFrameskip-v4",
|
21 |
+
"AirRaidNoFrameskip-v4",
|
22 |
+
"AlienNoFrameskip-v4",
|
23 |
+
"AmidarNoFrameskip-v4",
|
24 |
+
"AssaultNoFrameskip-v4",
|
25 |
+
"AsterixNoFrameskip-v4",
|
26 |
+
"AsteroidsNoFrameskip-v4",
|
27 |
+
"AtlantisNoFrameskip-v4",
|
28 |
+
"BankHeistNoFrameskip-v4",
|
29 |
+
"BattleZoneNoFrameskip-v4",
|
30 |
+
"BeamRiderNoFrameskip-v4",
|
31 |
+
"BerzerkNoFrameskip-v4",
|
32 |
+
"BowlingNoFrameskip-v4",
|
33 |
+
"BoxingNoFrameskip-v4",
|
34 |
+
"BreakoutNoFrameskip-v4",
|
35 |
+
"CarnivalNoFrameskip-v4",
|
36 |
+
"CentipedeNoFrameskip-v4",
|
37 |
+
"ChopperCommandNoFrameskip-v4",
|
38 |
+
"CrazyClimberNoFrameskip-v4",
|
39 |
+
"DefenderNoFrameskip-v4",
|
40 |
+
"DemonAttackNoFrameskip-v4",
|
41 |
+
"DoubleDunkNoFrameskip-v4",
|
42 |
+
"ElevatorActionNoFrameskip-v4",
|
43 |
+
"EnduroNoFrameskip-v4",
|
44 |
+
"FishingDerbyNoFrameskip-v4",
|
45 |
+
"FreewayNoFrameskip-v4",
|
46 |
+
"FrostbiteNoFrameskip-v4",
|
47 |
+
"GopherNoFrameskip-v4",
|
48 |
+
"GravitarNoFrameskip-v4",
|
49 |
+
"HeroNoFrameskip-v4",
|
50 |
+
"IceHockeyNoFrameskip-v4",
|
51 |
+
"JamesbondNoFrameskip-v4",
|
52 |
+
"JourneyEscapeNoFrameskip-v4",
|
53 |
+
"KangarooNoFrameskip-v4",
|
54 |
+
"KrullNoFrameskip-v4",
|
55 |
+
"KungFuMasterNoFrameskip-v4",
|
56 |
+
"MontezumaRevengeNoFrameskip-v4",
|
57 |
+
"MsPacmanNoFrameskip-v4",
|
58 |
+
"NameThisGameNoFrameskip-v4",
|
59 |
+
"PhoenixNoFrameskip-v4",
|
60 |
+
"PitfallNoFrameskip-v4",
|
61 |
+
"PongNoFrameskip-v4",
|
62 |
+
"PooyanNoFrameskip-v4",
|
63 |
+
"PrivateEyeNoFrameskip-v4",
|
64 |
+
"QbertNoFrameskip-v4",
|
65 |
+
"RiverraidNoFrameskip-v4",
|
66 |
+
"RoadRunnerNoFrameskip-v4",
|
67 |
+
"RobotankNoFrameskip-v4",
|
68 |
+
"SeaquestNoFrameskip-v4",
|
69 |
+
"SkiingNoFrameskip-v4",
|
70 |
+
"SolarisNoFrameskip-v4",
|
71 |
+
"SpaceInvadersNoFrameskip-v4",
|
72 |
+
"StarGunnerNoFrameskip-v4",
|
73 |
+
"TennisNoFrameskip-v4",
|
74 |
+
"TimePilotNoFrameskip-v4",
|
75 |
+
"TutankhamNoFrameskip-v4",
|
76 |
+
"UpNDownNoFrameskip-v4",
|
77 |
+
"VentureNoFrameskip-v4",
|
78 |
+
"VideoPinballNoFrameskip-v4",
|
79 |
+
"WizardOfWorNoFrameskip-v4",
|
80 |
+
"YarsRevengeNoFrameskip-v4",
|
81 |
+
"ZaxxonNoFrameskip-v4",
|
82 |
+
# Box2D
|
83 |
+
"BipedalWalker-v3",
|
84 |
+
"BipedalWalkerHardcore-v3",
|
85 |
+
"CarRacing-v2",
|
86 |
+
"LunarLander-v2",
|
87 |
+
"LunarLanderContinuous-v2",
|
88 |
+
# Toy text
|
89 |
+
"Blackjack-v1",
|
90 |
+
"CliffWalking-v0",
|
91 |
+
"FrozenLake-v1",
|
92 |
+
"FrozenLake8x8-v1",
|
93 |
+
# Classic control
|
94 |
+
"Acrobot-v1",
|
95 |
+
"CartPole-v1",
|
96 |
+
"MountainCar-v0",
|
97 |
+
"MountainCarContinuous-v0",
|
98 |
+
"Pendulum-v1",
|
99 |
+
# MuJoCo
|
100 |
+
"Ant-v4",
|
101 |
+
"HalfCheetah-v4",
|
102 |
+
"Hopper-v4",
|
103 |
+
"Humanoid-v4",
|
104 |
+
"HumanoidStandup-v4",
|
105 |
+
"InvertedDoublePendulum-v4",
|
106 |
+
"InvertedPendulum-v4",
|
107 |
+
"Pusher-v4",
|
108 |
+
"Reacher-v4",
|
109 |
+
"Swimmer-v4",
|
110 |
+
"Walker2d-v4",
|
111 |
+
]
|
112 |
+
|
113 |
+
NUM_EPISODES = 50
|
114 |
+
|
115 |
+
|
116 |
+
class NoopResetEnv(gym.Wrapper[np.ndarray, int, np.ndarray, int]):
|
117 |
+
"""
|
118 |
+
Sample initial states by taking random number of no-ops on reset.
|
119 |
+
No-op is assumed to be action 0.
|
120 |
+
|
121 |
+
:param env: Environment to wrap
|
122 |
+
:param noop_max: Maximum value of no-ops to run
|
123 |
+
"""
|
124 |
+
|
125 |
+
def __init__(self, env: gym.Env, noop_max: int = 30) -> None:
|
126 |
+
super().__init__(env)
|
127 |
+
self.noop_max = noop_max
|
128 |
+
self.override_num_noops = None
|
129 |
+
self.noop_action = 0
|
130 |
+
assert env.unwrapped.get_action_meanings()[0] == "NOOP" # type: ignore[attr-defined]
|
131 |
+
|
132 |
+
def reset(self, **kwargs):
|
133 |
+
self.env.reset(**kwargs)
|
134 |
+
if self.override_num_noops is not None:
|
135 |
+
noops = self.override_num_noops
|
136 |
+
else:
|
137 |
+
noops = self.unwrapped.np_random.integers(1, self.noop_max + 1)
|
138 |
+
assert noops > 0
|
139 |
+
obs = np.zeros(0)
|
140 |
+
info: Dict = {}
|
141 |
+
for _ in range(noops):
|
142 |
+
obs, _, terminated, truncated, info = self.env.step(self.noop_action)
|
143 |
+
if terminated or truncated:
|
144 |
+
obs, info = self.env.reset(**kwargs)
|
145 |
+
return obs, info
|
146 |
+
|
147 |
+
|
148 |
+
class FireResetEnv(gym.Wrapper[np.ndarray, int, np.ndarray, int]):
|
149 |
+
"""
|
150 |
+
Take action on reset for environments that are fixed until firing.
|
151 |
+
|
152 |
+
:param env: Environment to wrap
|
153 |
+
"""
|
154 |
+
|
155 |
+
def __init__(self, env: gym.Env) -> None:
|
156 |
+
super().__init__(env)
|
157 |
+
assert env.unwrapped.get_action_meanings()[1] == "FIRE" # type: ignore[attr-defined]
|
158 |
+
assert len(env.unwrapped.get_action_meanings()) >= 3 # type: ignore[attr-defined]
|
159 |
+
|
160 |
+
def reset(self, **kwargs):
|
161 |
+
self.env.reset(**kwargs)
|
162 |
+
obs, _, terminated, truncated, _ = self.env.step(1)
|
163 |
+
if terminated or truncated:
|
164 |
+
self.env.reset(**kwargs)
|
165 |
+
obs, _, terminated, truncated, _ = self.env.step(2)
|
166 |
+
if terminated or truncated:
|
167 |
+
self.env.reset(**kwargs)
|
168 |
+
return obs, {}
|
169 |
+
|
170 |
+
|
171 |
+
class EpisodicLifeEnv(gym.Wrapper[np.ndarray, int, np.ndarray, int]):
|
172 |
+
"""
|
173 |
+
Make end-of-life == end-of-episode, but only reset on true game over.
|
174 |
+
Done by DeepMind for the DQN and co. since it helps value estimation.
|
175 |
+
|
176 |
+
:param env: Environment to wrap
|
177 |
+
"""
|
178 |
+
|
179 |
+
def __init__(self, env: gym.Env) -> None:
|
180 |
+
super().__init__(env)
|
181 |
+
self.lives = 0
|
182 |
+
self.was_real_done = True
|
183 |
+
|
184 |
+
def step(self, action: int):
|
185 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
186 |
+
self.was_real_done = terminated or truncated
|
187 |
+
# check current lives, make loss of life terminal,
|
188 |
+
# then update lives to handle bonus lives
|
189 |
+
lives = self.env.unwrapped.ale.lives() # type: ignore[attr-defined]
|
190 |
+
if 0 < lives < self.lives:
|
191 |
+
# for Qbert sometimes we stay in lives == 0 condition for a few frames
|
192 |
+
# so its important to keep lives > 0, so that we only reset once
|
193 |
+
# the environment advertises done.
|
194 |
+
terminated = True
|
195 |
+
self.lives = lives
|
196 |
+
return obs, reward, terminated, truncated, info
|
197 |
+
|
198 |
+
def reset(self, **kwargs):
|
199 |
+
"""
|
200 |
+
Calls the Gym environment reset, only when lives are exhausted.
|
201 |
+
This way all states are still reachable even though lives are episodic,
|
202 |
+
and the learner need not know about any of this behind-the-scenes.
|
203 |
+
|
204 |
+
:param kwargs: Extra keywords passed to env.reset() call
|
205 |
+
:return: the first observation of the environment
|
206 |
+
"""
|
207 |
+
if self.was_real_done:
|
208 |
+
obs, info = self.env.reset(**kwargs)
|
209 |
+
else:
|
210 |
+
# no-op step to advance from terminal/lost life state
|
211 |
+
obs, _, terminated, truncated, info = self.env.step(0)
|
212 |
+
|
213 |
+
# The no-op step can lead to a game over, so we need to check it again
|
214 |
+
# to see if we should reset the environment and avoid the
|
215 |
+
# monitor.py `RuntimeError: Tried to step environment that needs reset`
|
216 |
+
if terminated or truncated:
|
217 |
+
obs, info = self.env.reset(**kwargs)
|
218 |
+
self.lives = self.env.unwrapped.ale.lives() # type: ignore[attr-defined]
|
219 |
+
return obs, info
|
220 |
+
|
221 |
+
|
222 |
+
class MaxAndSkipEnv(gym.Wrapper[np.ndarray, int, np.ndarray, int]):
|
223 |
+
"""
|
224 |
+
Return only every ``skip``-th frame (frameskipping)
|
225 |
+
and return the max between the two last frames.
|
226 |
+
|
227 |
+
:param env: Environment to wrap
|
228 |
+
:param skip: Number of ``skip``-th frame
|
229 |
+
The same action will be taken ``skip`` times.
|
230 |
+
"""
|
231 |
+
|
232 |
+
def __init__(self, env: gym.Env, skip: int = 4) -> None:
|
233 |
+
super().__init__(env)
|
234 |
+
# most recent raw observations (for max pooling across time steps)
|
235 |
+
assert env.observation_space.dtype is not None, "No dtype specified for the observation space"
|
236 |
+
assert env.observation_space.shape is not None, "No shape defined for the observation space"
|
237 |
+
self._obs_buffer = np.zeros((2, *env.observation_space.shape), dtype=env.observation_space.dtype)
|
238 |
+
self._skip = skip
|
239 |
+
|
240 |
+
def step(self, action: int):
|
241 |
+
"""
|
242 |
+
Step the environment with the given action
|
243 |
+
Repeat action, sum reward, and max over last observations.
|
244 |
+
|
245 |
+
:param action: the action
|
246 |
+
:return: observation, reward, terminated, truncated, information
|
247 |
+
"""
|
248 |
+
total_reward = 0.0
|
249 |
+
terminated = truncated = False
|
250 |
+
for i in range(self._skip):
|
251 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
252 |
+
done = terminated or truncated
|
253 |
+
if i == self._skip - 2:
|
254 |
+
self._obs_buffer[0] = obs
|
255 |
+
if i == self._skip - 1:
|
256 |
+
self._obs_buffer[1] = obs
|
257 |
+
total_reward += float(reward)
|
258 |
+
if done:
|
259 |
+
break
|
260 |
+
# Note that the observation on the done=True frame
|
261 |
+
# doesn't matter
|
262 |
+
max_frame = self._obs_buffer.max(axis=0)
|
263 |
+
|
264 |
+
return max_frame, total_reward, terminated, truncated, info
|
265 |
+
|
266 |
+
|
267 |
+
class ClipRewardEnv(gym.RewardWrapper):
|
268 |
+
"""
|
269 |
+
Clip the reward to {+1, 0, -1} by its sign.
|
270 |
+
|
271 |
+
:param env: Environment to wrap
|
272 |
+
"""
|
273 |
+
|
274 |
+
def __init__(self, env: gym.Env) -> None:
|
275 |
+
super().__init__(env)
|
276 |
+
|
277 |
+
def reward(self, reward: SupportsFloat) -> float:
|
278 |
+
"""
|
279 |
+
Bin reward to {+1, 0, -1} by its sign.
|
280 |
+
|
281 |
+
:param reward:
|
282 |
+
:return:
|
283 |
+
"""
|
284 |
+
return np.sign(float(reward))
|
285 |
+
|
286 |
+
|
287 |
+
def make(env_id):
|
288 |
+
def thunk():
|
289 |
+
env = gym.make(env_id)
|
290 |
+
env = wrappers.RecordEpisodeStatistics(env)
|
291 |
+
if "NoFrameskip" in env_id:
|
292 |
+
env = NoopResetEnv(env, noop_max=30)
|
293 |
+
env = MaxAndSkipEnv(env, skip=4)
|
294 |
+
env = EpisodicLifeEnv(env)
|
295 |
+
if "FIRE" in env.unwrapped.get_action_meanings():
|
296 |
+
env = FireResetEnv(env)
|
297 |
+
env = ClipRewardEnv(env)
|
298 |
+
env = wrappers.ResizeObservation(env, (84, 84))
|
299 |
+
env = wrappers.GrayScaleObservation(env)
|
300 |
+
env = wrappers.FrameStack(env, 4)
|
301 |
+
return env
|
302 |
+
|
303 |
+
return thunk
|
304 |
+
|
305 |
+
|
306 |
+
def pattern_match(patterns, source_list):
|
307 |
+
if isinstance(patterns, str):
|
308 |
+
patterns = [patterns]
|
309 |
+
|
310 |
+
env_ids = set()
|
311 |
+
for pattern in patterns:
|
312 |
+
for matching in fnmatch.filter(source_list, pattern):
|
313 |
+
env_ids.add(matching)
|
314 |
+
return sorted(list(env_ids))
|
315 |
+
|
316 |
+
|
317 |
+
def evaluate(model_id, revision):
|
318 |
+
tags = API.model_info(model_id, revision=revision).tags
|
319 |
+
|
320 |
+
# Extract the environment IDs from the tags (usually only one)
|
321 |
+
env_ids = pattern_match(tags, ALL_ENV_IDS)
|
322 |
+
logger.info(f"Selected environments: {env_ids}")
|
323 |
+
|
324 |
+
results = {}
|
325 |
+
|
326 |
+
# Check if the agent exists
|
327 |
+
try:
|
328 |
+
agent_path = API.hf_hub_download(repo_id=model_id, filename="agent.pt")
|
329 |
+
except EntryNotFoundError:
|
330 |
+
logger.error("Agent not found")
|
331 |
+
return None
|
332 |
+
|
333 |
+
# Check safety
|
334 |
+
security = next(iter(API.get_paths_info(model_id, "agent.pt", expand=True))).security
|
335 |
+
if security is None or "safe" not in security:
|
336 |
+
logger.warn("Agent safety not available")
|
337 |
+
# return None
|
338 |
+
elif not security["safe"]:
|
339 |
+
logger.error("Agent not safe")
|
340 |
+
return None
|
341 |
+
|
342 |
+
# Load the agent
|
343 |
+
try:
|
344 |
+
agent = torch.jit.load(agent_path).to("cuda")
|
345 |
+
except Exception as e:
|
346 |
+
logger.error(f"Error loading agent: {e}")
|
347 |
+
return None
|
348 |
+
|
349 |
+
# Evaluate the agent on the environments
|
350 |
+
for env_id in env_ids:
|
351 |
+
envs = gym.vector.SyncVectorEnv([make(env_id) for _ in range(1)])
|
352 |
+
observations, _ = envs.reset()
|
353 |
+
episodic_returns = []
|
354 |
+
while len(episodic_returns) < NUM_EPISODES:
|
355 |
+
actions = agent(torch.tensor(observations)).numpy()
|
356 |
+
observations, _, _, _, infos = envs.step(actions)
|
357 |
+
if "final_info" in infos:
|
358 |
+
for info in infos["final_info"]:
|
359 |
+
if info is None or "episode" not in info:
|
360 |
+
continue
|
361 |
+
episodic_returns.append(float(info["episode"]["r"]))
|
362 |
+
|
363 |
+
results[env_id] = {"episodic_returns": episodic_returns}
|
364 |
+
logger.info(f"Environment {env_id}: {np.mean(episodic_returns)} ± {np.std(episodic_returns)}")
|
365 |
+
return results
|
src/logging.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
|
3 |
+
proj_dir = Path(__file__).parents[1]
|
4 |
+
|
5 |
+
log_file = proj_dir / "output.log"
|
6 |
+
|
7 |
+
|
8 |
+
import logging
|
9 |
+
|
10 |
+
|
11 |
+
def setup_logger(name: str):
|
12 |
+
logger = logging.getLogger(name)
|
13 |
+
logger.setLevel(logging.INFO)
|
14 |
+
|
15 |
+
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
|
16 |
+
|
17 |
+
# Create a file handler to write logs to a file
|
18 |
+
file_handler = logging.FileHandler(log_file)
|
19 |
+
file_handler.setLevel(logging.INFO)
|
20 |
+
file_handler.setFormatter(formatter)
|
21 |
+
logger.addHandler(file_handler)
|
22 |
+
|
23 |
+
return logger
|
24 |
+
|
25 |
+
|
26 |
+
def configure_root_logger():
|
27 |
+
# Configure the root logger
|
28 |
+
logging.basicConfig(level=logging.INFO)
|
29 |
+
root_logger = logging.getLogger()
|
30 |
+
|
31 |
+
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
|
32 |
+
|
33 |
+
file_handler = logging.FileHandler(log_file)
|
34 |
+
file_handler.setLevel(logging.INFO)
|
35 |
+
file_handler.setFormatter(formatter)
|
36 |
+
|
37 |
+
root_logger.addHandler(file_handler)
|