Spaces:
Running
Running
Quentin Gallouédec
commited on
Commit
•
158554b
1
Parent(s):
0e40d4c
main commit
Browse files- .gitignore +2 -0
- .pre-commit-config.yaml +53 -0
- Makefile +13 -0
- README.md +1 -1
- app.py +90 -0
- packages.txt +3 -0
- pyproject.toml +15 -0
- requirements.txt +27 -0
- src/backend.py +594 -0
- src/logging.py +37 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
.DS_Store
|
.pre-commit-config.yaml
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
default_language_version:
|
16 |
+
python: python3
|
17 |
+
|
18 |
+
ci:
|
19 |
+
autofix_prs: true
|
20 |
+
autoupdate_commit_msg: '[pre-commit.ci] pre-commit suggestions'
|
21 |
+
autoupdate_schedule: quarterly
|
22 |
+
|
23 |
+
repos:
|
24 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
25 |
+
rev: v4.3.0
|
26 |
+
hooks:
|
27 |
+
- id: check-yaml
|
28 |
+
- id: check-case-conflict
|
29 |
+
- id: detect-private-key
|
30 |
+
- id: check-added-large-files
|
31 |
+
args: ['--maxkb=1000']
|
32 |
+
- id: requirements-txt-fixer
|
33 |
+
- id: end-of-file-fixer
|
34 |
+
- id: trailing-whitespace
|
35 |
+
|
36 |
+
- repo: https://github.com/PyCQA/isort
|
37 |
+
rev: 5.12.0
|
38 |
+
hooks:
|
39 |
+
- id: isort
|
40 |
+
name: Format imports
|
41 |
+
|
42 |
+
- repo: https://github.com/psf/black
|
43 |
+
rev: 22.12.0
|
44 |
+
hooks:
|
45 |
+
- id: black
|
46 |
+
name: Format code
|
47 |
+
additional_dependencies: ['click==8.0.2']
|
48 |
+
|
49 |
+
- repo: https://github.com/charliermarsh/ruff-pre-commit
|
50 |
+
# Ruff version.
|
51 |
+
rev: 'v0.0.267'
|
52 |
+
hooks:
|
53 |
+
- id: ruff
|
Makefile
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.PHONY: style format
|
2 |
+
|
3 |
+
|
4 |
+
style:
|
5 |
+
python -m black --line-length 119 src app.py
|
6 |
+
python -m isort src app.py
|
7 |
+
ruff check --fix src app.py
|
8 |
+
|
9 |
+
|
10 |
+
quality:
|
11 |
+
python -m black --check --line-length 119 src app.py
|
12 |
+
python -m isort --check-only src app.py
|
13 |
+
ruff check src app.py
|
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: 🏃
|
4 |
colorFrom: green
|
5 |
colorTo: red
|
|
|
1 |
---
|
2 |
+
title: SB3 Backend
|
3 |
emoji: 🏃
|
4 |
colorFrom: green
|
5 |
colorTo: red
|
app.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from functools import partial
|
3 |
+
from io import StringIO
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
7 |
+
from bs4 import BeautifulSoup
|
8 |
+
from rich.console import Console
|
9 |
+
from rich.syntax import Syntax
|
10 |
+
|
11 |
+
from src.backend import backend_routine
|
12 |
+
from src.logging import configure_root_logger, log_file, setup_logger
|
13 |
+
|
14 |
+
logging.getLogger("httpx").setLevel(logging.WARNING)
|
15 |
+
logging.getLogger("numexpr").setLevel(logging.WARNING)
|
16 |
+
logging.getLogger("absl").setLevel(logging.WARNING)
|
17 |
+
|
18 |
+
configure_root_logger()
|
19 |
+
|
20 |
+
logging.basicConfig(level=logging.INFO)
|
21 |
+
logger = setup_logger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
def log_file_to_html_string(reverse=True):
|
25 |
+
with open(log_file, "rt") as f:
|
26 |
+
lines = f.readlines()
|
27 |
+
lines = lines[-300:]
|
28 |
+
|
29 |
+
if reverse:
|
30 |
+
lines = reversed(lines)
|
31 |
+
|
32 |
+
output = "".join(lines)
|
33 |
+
syntax = Syntax(output, "python", theme="monokai", word_wrap=True)
|
34 |
+
|
35 |
+
console = Console(record=True, width=150, style="#272822", file=StringIO())
|
36 |
+
console.print(syntax)
|
37 |
+
html_content = console.export_html(inline_styles=True)
|
38 |
+
|
39 |
+
# Parse the HTML content using BeautifulSoup
|
40 |
+
soup = BeautifulSoup(html_content, "lxml")
|
41 |
+
|
42 |
+
# Modify the <pre> tag and add custom styles
|
43 |
+
pre_tag = soup.pre
|
44 |
+
pre_tag["class"] = "scrollable"
|
45 |
+
del pre_tag["style"]
|
46 |
+
|
47 |
+
# Add your custom styles and the .scrollable CSS to the <style> tag
|
48 |
+
style_tag = soup.style
|
49 |
+
style_tag.append(
|
50 |
+
"""
|
51 |
+
pre, code {
|
52 |
+
background-color: #272822;
|
53 |
+
}
|
54 |
+
.scrollable {
|
55 |
+
font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace;
|
56 |
+
height: 500px;
|
57 |
+
overflow: auto;
|
58 |
+
}
|
59 |
+
"""
|
60 |
+
)
|
61 |
+
|
62 |
+
return soup.prettify()
|
63 |
+
|
64 |
+
|
65 |
+
REPO_ID = "open-rl-leaderboard/leaderboard"
|
66 |
+
RESULTS_REPO = "open-rl-leaderboard/results"
|
67 |
+
|
68 |
+
|
69 |
+
links_md = f"""
|
70 |
+
# Important links
|
71 |
+
| Description | Link |
|
72 |
+
|-----------------|------|
|
73 |
+
| Leaderboard | [{REPO_ID}](https://huggingface.co/spaces/{REPO_ID}) |
|
74 |
+
| Results Repo | [{RESULTS_REPO}](https://huggingface.co/datasets/{RESULTS_REPO}) |
|
75 |
+
"""
|
76 |
+
|
77 |
+
|
78 |
+
with gr.Blocks() as demo:
|
79 |
+
gr.Markdown(links_md)
|
80 |
+
gr.HTML(partial(log_file_to_html_string), every=1)
|
81 |
+
with gr.Row():
|
82 |
+
gr.DownloadButton("Download Log File", value=log_file)
|
83 |
+
|
84 |
+
|
85 |
+
scheduler = BackgroundScheduler()
|
86 |
+
scheduler.add_job(func=backend_routine, trigger="interval", seconds=5 * 60, max_instances=1)
|
87 |
+
scheduler.start()
|
88 |
+
|
89 |
+
if __name__ == "__main__":
|
90 |
+
demo.queue().launch()
|
packages.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
swig
|
2 |
+
libosmesa6-dev
|
3 |
+
patchelf
|
pyproject.toml
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[tool.ruff]
|
2 |
+
line-length = 119
|
3 |
+
|
4 |
+
[tool.ruff.lint]
|
5 |
+
# Enable pycodestyle (`E`) and Pyflakes (`F`) codes by default.
|
6 |
+
select = ["E", "F"]
|
7 |
+
ignore = ["E501"] # line too long (black is taking care of this)
|
8 |
+
fixable = ["A", "B", "C", "D", "E", "F", "G", "I", "N", "Q", "S", "T", "W", "ANN", "ARG", "BLE", "COM", "DJ", "DTZ", "EM", "ERA", "EXE", "FBT", "ICN", "INP", "ISC", "NPY", "PD", "PGH", "PIE", "PL", "PT", "PTH", "PYI", "RET", "RSE", "RUF", "SIM", "SLF", "TCH", "TID", "TRY", "UP", "YTT"]
|
9 |
+
|
10 |
+
[tool.isort]
|
11 |
+
profile = "black"
|
12 |
+
line_length = 119
|
13 |
+
|
14 |
+
[tool.black]
|
15 |
+
line-length = 119
|
requirements.txt
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
APScheduler==3.10.1
|
2 |
+
black==23.11.0
|
3 |
+
click==8.1.3
|
4 |
+
datasets==2.14.5
|
5 |
+
gradio==4.20.0
|
6 |
+
gradio_client
|
7 |
+
gymnasium[all,accept-rom-license]==0.29.1
|
8 |
+
huggingface-hub>=0.18.0
|
9 |
+
matplotlib==3.7.1
|
10 |
+
free-mujoco-py
|
11 |
+
mujoco<=2.3.7
|
12 |
+
numpy==1.24.2
|
13 |
+
pandas==2.0.0
|
14 |
+
python-dateutil==2.8.2
|
15 |
+
requests==2.28.2
|
16 |
+
rliable==1.0.8
|
17 |
+
rl-zoo3==2.3.0
|
18 |
+
sb3-contrib==2.3.0
|
19 |
+
torch==2.2.2
|
20 |
+
tqdm==4.65.0
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
# Log Visualizer
|
25 |
+
BeautifulSoup4==4.12.2
|
26 |
+
lxml==4.9.3
|
27 |
+
rich==13.3.4
|
src/backend.py
ADDED
@@ -0,0 +1,594 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import fnmatch
|
2 |
+
import importlib
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
import re
|
6 |
+
import shutil
|
7 |
+
import sys
|
8 |
+
import tempfile
|
9 |
+
import time
|
10 |
+
import zipfile
|
11 |
+
from pathlib import Path
|
12 |
+
from typing import Optional
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
import rl_zoo3.import_envs # noqa: F401 pylint: disable=unused-import
|
16 |
+
import torch as th
|
17 |
+
import yaml
|
18 |
+
from huggingface_hub import CommitOperationAdd, HfApi
|
19 |
+
from huggingface_hub.utils import EntryNotFoundError
|
20 |
+
from huggingface_sb3 import EnvironmentName, ModelName, ModelRepoId, load_from_hub
|
21 |
+
from requests.exceptions import HTTPError
|
22 |
+
from rl_zoo3 import ALGOS, create_test_env, get_latest_run_id, get_saved_hyperparams
|
23 |
+
from rl_zoo3.exp_manager import ExperimentManager
|
24 |
+
from rl_zoo3.utils import get_model_path
|
25 |
+
from stable_baselines3.common.utils import set_random_seed
|
26 |
+
|
27 |
+
from src.logging import setup_logger
|
28 |
+
|
29 |
+
ALL_ENV_IDS = [
|
30 |
+
"AdventureNoFrameskip-v4",
|
31 |
+
"AirRaidNoFrameskip-v4",
|
32 |
+
"AlienNoFrameskip-v4",
|
33 |
+
"AmidarNoFrameskip-v4",
|
34 |
+
"AssaultNoFrameskip-v4",
|
35 |
+
"AsterixNoFrameskip-v4",
|
36 |
+
"AsteroidsNoFrameskip-v4",
|
37 |
+
"AtlantisNoFrameskip-v4",
|
38 |
+
"BankHeistNoFrameskip-v4",
|
39 |
+
"BattleZoneNoFrameskip-v4",
|
40 |
+
"BeamRiderNoFrameskip-v4",
|
41 |
+
"BerzerkNoFrameskip-v4",
|
42 |
+
"BowlingNoFrameskip-v4",
|
43 |
+
"BoxingNoFrameskip-v4",
|
44 |
+
"BreakoutNoFrameskip-v4",
|
45 |
+
"CarnivalNoFrameskip-v4",
|
46 |
+
"CentipedeNoFrameskip-v4",
|
47 |
+
"ChopperCommandNoFrameskip-v4",
|
48 |
+
"CrazyClimberNoFrameskip-v4",
|
49 |
+
"DefenderNoFrameskip-v4",
|
50 |
+
"DemonAttackNoFrameskip-v4",
|
51 |
+
"DoubleDunkNoFrameskip-v4",
|
52 |
+
"ElevatorActionNoFrameskip-v4",
|
53 |
+
"EnduroNoFrameskip-v4",
|
54 |
+
"FishingDerbyNoFrameskip-v4",
|
55 |
+
"FreewayNoFrameskip-v4",
|
56 |
+
"FrostbiteNoFrameskip-v4",
|
57 |
+
"GopherNoFrameskip-v4",
|
58 |
+
"GravitarNoFrameskip-v4",
|
59 |
+
"HeroNoFrameskip-v4",
|
60 |
+
"IceHockeyNoFrameskip-v4",
|
61 |
+
"JamesbondNoFrameskip-v4",
|
62 |
+
"JourneyEscapeNoFrameskip-v4",
|
63 |
+
"KangarooNoFrameskip-v4",
|
64 |
+
"KrullNoFrameskip-v4",
|
65 |
+
"KungFuMasterNoFrameskip-v4",
|
66 |
+
"MontezumaRevengeNoFrameskip-v4",
|
67 |
+
"MsPacmanNoFrameskip-v4",
|
68 |
+
"NameThisGameNoFrameskip-v4",
|
69 |
+
"PhoenixNoFrameskip-v4",
|
70 |
+
"PitfallNoFrameskip-v4",
|
71 |
+
"PongNoFrameskip-v4",
|
72 |
+
"PooyanNoFrameskip-v4",
|
73 |
+
"PrivateEyeNoFrameskip-v4",
|
74 |
+
"QbertNoFrameskip-v4",
|
75 |
+
"RiverraidNoFrameskip-v4",
|
76 |
+
"RoadRunnerNoFrameskip-v4",
|
77 |
+
"RobotankNoFrameskip-v4",
|
78 |
+
"SeaquestNoFrameskip-v4",
|
79 |
+
"SkiingNoFrameskip-v4",
|
80 |
+
"SolarisNoFrameskip-v4",
|
81 |
+
"SpaceInvadersNoFrameskip-v4",
|
82 |
+
"StarGunnerNoFrameskip-v4",
|
83 |
+
"TennisNoFrameskip-v4",
|
84 |
+
"TimePilotNoFrameskip-v4",
|
85 |
+
"TutankhamNoFrameskip-v4",
|
86 |
+
"UpNDownNoFrameskip-v4",
|
87 |
+
"VentureNoFrameskip-v4",
|
88 |
+
"VideoPinballNoFrameskip-v4",
|
89 |
+
"WizardOfWorNoFrameskip-v4",
|
90 |
+
"YarsRevengeNoFrameskip-v4",
|
91 |
+
"ZaxxonNoFrameskip-v4",
|
92 |
+
# Box2D
|
93 |
+
"BipedalWalker-v3",
|
94 |
+
"BipedalWalkerHardcore-v3",
|
95 |
+
"CarRacing-v2",
|
96 |
+
"LunarLander-v2",
|
97 |
+
"LunarLanderContinuous-v2",
|
98 |
+
# Toy text
|
99 |
+
"Blackjack-v1",
|
100 |
+
"CliffWalking-v0",
|
101 |
+
"FrozenLake-v1",
|
102 |
+
"FrozenLake8x8-v1",
|
103 |
+
# Classic control
|
104 |
+
"Acrobot-v1",
|
105 |
+
"CartPole-v1",
|
106 |
+
"MountainCar-v0",
|
107 |
+
"MountainCarContinuous-v0",
|
108 |
+
"Pendulum-v1",
|
109 |
+
# MuJoCo
|
110 |
+
"Ant-v4",
|
111 |
+
"HalfCheetah-v4",
|
112 |
+
"Hopper-v4",
|
113 |
+
"Humanoid-v4",
|
114 |
+
"HumanoidStandup-v4",
|
115 |
+
"InvertedDoublePendulum-v4",
|
116 |
+
"InvertedPendulum-v4",
|
117 |
+
"Pusher-v4",
|
118 |
+
"Reacher-v4",
|
119 |
+
"Swimmer-v4",
|
120 |
+
"Walker2d-v4",
|
121 |
+
]
|
122 |
+
|
123 |
+
|
124 |
+
def download_from_hub(
|
125 |
+
algo: str,
|
126 |
+
env_name: EnvironmentName,
|
127 |
+
exp_id: int,
|
128 |
+
folder: str,
|
129 |
+
organization: str,
|
130 |
+
repo_name: Optional[str] = None,
|
131 |
+
force: bool = False,
|
132 |
+
) -> None:
|
133 |
+
"""
|
134 |
+
Try to load a model from the Huggingface hub
|
135 |
+
and save it following the RL Zoo structure.
|
136 |
+
Default repo name is {organization}/{algo}-{env_id}
|
137 |
+
where repo_name = {algo}-{env_id}
|
138 |
+
|
139 |
+
:param algo: Algorithm
|
140 |
+
:param env_name: Environment name
|
141 |
+
:param exp_id: Experiment id
|
142 |
+
:param folder: Log folder
|
143 |
+
:param organization: Huggingface organization
|
144 |
+
:param repo_name: Overwrite default repository name
|
145 |
+
:param force: Allow overwritting the folder
|
146 |
+
if it already exists.
|
147 |
+
"""
|
148 |
+
|
149 |
+
model_name = ModelName(algo, env_name)
|
150 |
+
|
151 |
+
if repo_name is None:
|
152 |
+
repo_name = model_name # Note: model name is {algo}-{env_name}
|
153 |
+
|
154 |
+
# Note: repo id is {organization}/{repo_name}
|
155 |
+
repo_id = ModelRepoId(organization, repo_name)
|
156 |
+
logger.info(f"Downloading from https://huggingface.co/{repo_id}")
|
157 |
+
|
158 |
+
checkpoint = load_from_hub(repo_id, model_name.filename)
|
159 |
+
try:
|
160 |
+
config_path = load_from_hub(repo_id, "config.yml")
|
161 |
+
except EntryNotFoundError: # hotfix for old models
|
162 |
+
config_path = load_from_hub(repo_id, "config.json")
|
163 |
+
with open(config_path, "r") as f:
|
164 |
+
config = json.load(f)
|
165 |
+
config_path = config_path.replace(".json", ".yml")
|
166 |
+
with open(config_path, "w") as f:
|
167 |
+
yaml.dump(config, f)
|
168 |
+
|
169 |
+
# If VecNormalize, download
|
170 |
+
try:
|
171 |
+
vec_normalize_stats = load_from_hub(repo_id, "vec_normalize.pkl")
|
172 |
+
except HTTPError:
|
173 |
+
logger.info("No normalization file")
|
174 |
+
vec_normalize_stats = None
|
175 |
+
|
176 |
+
try:
|
177 |
+
saved_args = load_from_hub(repo_id, "args.yml")
|
178 |
+
except EntryNotFoundError:
|
179 |
+
logger.info("No args file")
|
180 |
+
saved_args = None
|
181 |
+
|
182 |
+
try:
|
183 |
+
env_kwargs = load_from_hub(repo_id, "env_kwargs.yml")
|
184 |
+
except EntryNotFoundError:
|
185 |
+
logger.info("No env_kwargs file")
|
186 |
+
env_kwargs = None
|
187 |
+
|
188 |
+
try:
|
189 |
+
train_eval_metrics = load_from_hub(repo_id, "train_eval_metrics.zip")
|
190 |
+
except EntryNotFoundError:
|
191 |
+
logger.info("No train_eval_metrics file")
|
192 |
+
train_eval_metrics = None
|
193 |
+
|
194 |
+
if exp_id == 0:
|
195 |
+
exp_id = get_latest_run_id(os.path.join(folder, algo), env_name) + 1
|
196 |
+
# Sanity checks
|
197 |
+
if exp_id > 0:
|
198 |
+
log_path = os.path.join(folder, algo, f"{env_name}_{exp_id}")
|
199 |
+
else:
|
200 |
+
log_path = os.path.join(folder, algo)
|
201 |
+
|
202 |
+
# Check that the folder does not exist
|
203 |
+
log_folder = Path(log_path)
|
204 |
+
if log_folder.is_dir():
|
205 |
+
if force:
|
206 |
+
logger.info(f"The folder {log_path} already exists, overwritting")
|
207 |
+
# Delete the current one to avoid errors
|
208 |
+
shutil.rmtree(log_path)
|
209 |
+
else:
|
210 |
+
raise ValueError(
|
211 |
+
f"The folder {log_path} already exists, use --force to overwrite it, "
|
212 |
+
"or choose '--exp-id 0' to create a new folder"
|
213 |
+
)
|
214 |
+
|
215 |
+
logger.info(f"Saving to {log_path}")
|
216 |
+
# Create folder structure
|
217 |
+
os.makedirs(log_path, exist_ok=True)
|
218 |
+
config_folder = os.path.join(log_path, env_name)
|
219 |
+
os.makedirs(config_folder, exist_ok=True)
|
220 |
+
|
221 |
+
# Copy config files and saved stats
|
222 |
+
shutil.copy(checkpoint, os.path.join(log_path, f"{env_name}.zip"))
|
223 |
+
if saved_args is not None:
|
224 |
+
shutil.copy(saved_args, os.path.join(config_folder, "args.yml"))
|
225 |
+
shutil.copy(config_path, os.path.join(config_folder, "config.yml"))
|
226 |
+
if env_kwargs is not None:
|
227 |
+
shutil.copy(env_kwargs, os.path.join(config_folder, "env_kwargs.yml"))
|
228 |
+
if vec_normalize_stats is not None:
|
229 |
+
shutil.copy(vec_normalize_stats, os.path.join(config_folder, "vecnormalize.pkl"))
|
230 |
+
|
231 |
+
# Extract monitor file and evaluation file
|
232 |
+
if train_eval_metrics is not None:
|
233 |
+
with zipfile.ZipFile(train_eval_metrics, "r") as zip_ref:
|
234 |
+
zip_ref.extractall(log_path)
|
235 |
+
|
236 |
+
|
237 |
+
def pattern_match(patterns, source_list):
|
238 |
+
if isinstance(patterns, str):
|
239 |
+
patterns = [patterns]
|
240 |
+
|
241 |
+
env_ids = set()
|
242 |
+
for pattern in patterns:
|
243 |
+
for matching in fnmatch.filter(source_list, pattern):
|
244 |
+
env_ids.add(matching)
|
245 |
+
return sorted(list(env_ids))
|
246 |
+
|
247 |
+
|
248 |
+
def evaluate(
|
249 |
+
user_id,
|
250 |
+
repo_name,
|
251 |
+
env="CartPole-v1",
|
252 |
+
folder="rl-trained-agents",
|
253 |
+
algo="ppo",
|
254 |
+
# n_timesteps=1000,
|
255 |
+
n_episodes=50,
|
256 |
+
num_threads=-1,
|
257 |
+
n_envs=1,
|
258 |
+
exp_id=0,
|
259 |
+
verbose=1,
|
260 |
+
no_render=False,
|
261 |
+
deterministic=False,
|
262 |
+
device="auto",
|
263 |
+
load_best=False,
|
264 |
+
load_checkpoint=None,
|
265 |
+
load_last_checkpoint=False,
|
266 |
+
stochastic=False,
|
267 |
+
norm_reward=False,
|
268 |
+
seed=0,
|
269 |
+
reward_log="",
|
270 |
+
gym_packages=[],
|
271 |
+
env_kwargs=None,
|
272 |
+
custom_objects=False,
|
273 |
+
progress=False,
|
274 |
+
):
|
275 |
+
"""
|
276 |
+
Enjoy trained agent
|
277 |
+
|
278 |
+
:param env: (str) Environment ID
|
279 |
+
:param folder: (str) Log folder
|
280 |
+
:param algo: (str) RL Algorithm
|
281 |
+
:param n_timesteps: (int) Number of timesteps
|
282 |
+
:param num_threads: (int) Number of threads for PyTorch
|
283 |
+
:param n_envs: (int) Number of environments
|
284 |
+
:param exp_id: (int) Experiment ID (default: 0: latest, -1: no exp folder)
|
285 |
+
:param verbose: (int) Verbose mode (0: no output, 1: INFO)
|
286 |
+
:param no_render: (bool) Do not render the environment (useful for tests)
|
287 |
+
:param deterministic: (bool) Use deterministic actions
|
288 |
+
:param device: (str) PyTorch device to be use (ex: cpu, cuda...)
|
289 |
+
:param load_best: (bool) Load best model instead of last model if available
|
290 |
+
:param load_checkpoint: (int) Load checkpoint instead of last model if available
|
291 |
+
:param load_last_checkpoint: (bool) Load last checkpoint instead of last model if available
|
292 |
+
:param stochastic: (bool) Use stochastic actions
|
293 |
+
:param norm_reward: (bool) Normalize reward if applicable (trained with VecNormalize)
|
294 |
+
:param seed: (int) Random generator seed
|
295 |
+
:param reward_log: (str) Where to log reward
|
296 |
+
:param gym_packages: (List[str]) Additional external Gym environment package modules to import
|
297 |
+
:param env_kwargs: (Dict[str, Any]) Optional keyword argument to pass to the env constructor
|
298 |
+
:param custom_objects: (bool) Use custom objects to solve loading issues
|
299 |
+
:param progress: (bool) if toggled, display a progress bar using tqdm and rich
|
300 |
+
"""
|
301 |
+
|
302 |
+
# Going through custom gym packages to let them register in the global registory
|
303 |
+
for env_module in gym_packages:
|
304 |
+
importlib.import_module(env_module)
|
305 |
+
|
306 |
+
env_name = EnvironmentName(env)
|
307 |
+
|
308 |
+
# try:
|
309 |
+
# _, model_path, log_path = get_model_path(
|
310 |
+
# exp_id,
|
311 |
+
# folder,
|
312 |
+
# algo,
|
313 |
+
# env_name,
|
314 |
+
# load_best,
|
315 |
+
# load_checkpoint,
|
316 |
+
# load_last_checkpoint,
|
317 |
+
# )
|
318 |
+
# except (AssertionError, ValueError) as e:
|
319 |
+
# # Special case for rl-trained agents
|
320 |
+
# # auto-download from the hub
|
321 |
+
# if "rl-trained-agents" not in folder:
|
322 |
+
# raise e
|
323 |
+
# else:
|
324 |
+
# logger.info("Pretrained model not found, trying to download it from sb3 Huggingface hub: https://huggingface.co/sb3")
|
325 |
+
# Auto-download
|
326 |
+
download_from_hub(
|
327 |
+
algo=algo,
|
328 |
+
env_name=env_name,
|
329 |
+
exp_id=exp_id,
|
330 |
+
folder=folder,
|
331 |
+
# organization="sb3",
|
332 |
+
organization=user_id,
|
333 |
+
# repo_name=None,
|
334 |
+
repo_name=repo_name,
|
335 |
+
force=False,
|
336 |
+
)
|
337 |
+
# Try again
|
338 |
+
_, model_path, log_path = get_model_path(
|
339 |
+
exp_id,
|
340 |
+
folder,
|
341 |
+
algo,
|
342 |
+
env_name,
|
343 |
+
load_best,
|
344 |
+
load_checkpoint,
|
345 |
+
load_last_checkpoint,
|
346 |
+
)
|
347 |
+
|
348 |
+
logger.info(f"Loading {model_path}")
|
349 |
+
|
350 |
+
# Off-policy algorithm only support one env for now
|
351 |
+
off_policy_algos = ["qrdqn", "dqn", "ddpg", "sac", "her", "td3", "tqc"]
|
352 |
+
|
353 |
+
set_random_seed(seed)
|
354 |
+
|
355 |
+
if num_threads > 0:
|
356 |
+
if verbose > 1:
|
357 |
+
logger.info(f"Setting torch.num_threads to {num_threads}")
|
358 |
+
th.set_num_threads(num_threads)
|
359 |
+
|
360 |
+
is_atari = ExperimentManager.is_atari(env_name.gym_id)
|
361 |
+
is_minigrid = ExperimentManager.is_minigrid(env_name.gym_id)
|
362 |
+
|
363 |
+
stats_path = os.path.join(log_path, env_name)
|
364 |
+
hyperparams, maybe_stats_path = get_saved_hyperparams(stats_path, norm_reward=norm_reward, test_mode=True)
|
365 |
+
|
366 |
+
# load env_kwargs if existing
|
367 |
+
env_kwargs = {}
|
368 |
+
args_path = os.path.join(log_path, env_name, "args.yml")
|
369 |
+
if os.path.isfile(args_path):
|
370 |
+
with open(args_path) as f:
|
371 |
+
loaded_args = yaml.load(f, Loader=yaml.UnsafeLoader)
|
372 |
+
if loaded_args["env_kwargs"] is not None:
|
373 |
+
env_kwargs = loaded_args["env_kwargs"]
|
374 |
+
# overwrite with command line arguments
|
375 |
+
if env_kwargs is not None:
|
376 |
+
env_kwargs.update(env_kwargs)
|
377 |
+
|
378 |
+
log_dir = reward_log if reward_log != "" else None
|
379 |
+
|
380 |
+
env = create_test_env(
|
381 |
+
env_name.gym_id,
|
382 |
+
n_envs=n_envs,
|
383 |
+
stats_path=maybe_stats_path,
|
384 |
+
seed=seed,
|
385 |
+
log_dir=log_dir,
|
386 |
+
should_render=not no_render,
|
387 |
+
hyperparams=hyperparams,
|
388 |
+
env_kwargs=env_kwargs,
|
389 |
+
)
|
390 |
+
|
391 |
+
kwargs = dict(seed=seed)
|
392 |
+
if algo in off_policy_algos:
|
393 |
+
# Dummy buffer size as we don't need memory to enjoy the trained agent
|
394 |
+
kwargs.update(dict(buffer_size=1))
|
395 |
+
# Hack due to breaking change in v1.6
|
396 |
+
# handle_timeout_termination cannot be at the same time
|
397 |
+
# with optimize_memory_usage
|
398 |
+
if "optimize_memory_usage" in hyperparams:
|
399 |
+
kwargs.update(optimize_memory_usage=False)
|
400 |
+
|
401 |
+
# Check if we are running python 3.8+
|
402 |
+
# we need to patch saved model under python 3.6/3.7 to load them
|
403 |
+
newer_python_version = sys.version_info.major == 3 and sys.version_info.minor >= 8
|
404 |
+
|
405 |
+
custom_objects = {}
|
406 |
+
if newer_python_version or custom_objects:
|
407 |
+
custom_objects = {
|
408 |
+
"learning_rate": 0.0,
|
409 |
+
"lr_schedule": lambda _: 0.0,
|
410 |
+
"clip_range": lambda _: 0.0,
|
411 |
+
}
|
412 |
+
|
413 |
+
if "HerReplayBuffer" in hyperparams.get("replay_buffer_class", ""):
|
414 |
+
kwargs["env"] = env
|
415 |
+
|
416 |
+
model = ALGOS[algo].load(model_path, custom_objects=custom_objects, device=device, **kwargs)
|
417 |
+
obs = env.reset()
|
418 |
+
|
419 |
+
# Deterministic by default except for atari games
|
420 |
+
stochastic = stochastic or (is_atari or is_minigrid) and not deterministic
|
421 |
+
deterministic = not stochastic
|
422 |
+
|
423 |
+
episode_reward = 0.0
|
424 |
+
episode_rewards, episode_lengths = [], []
|
425 |
+
ep_len = 0
|
426 |
+
# For HER, monitor success rate
|
427 |
+
successes = []
|
428 |
+
lstm_states = None
|
429 |
+
episode_start = np.ones((env.num_envs,), dtype=bool)
|
430 |
+
|
431 |
+
# generator = range(n_timesteps)
|
432 |
+
# if progress:
|
433 |
+
# if tqdm is None:
|
434 |
+
# raise ImportError("Please install tqdm and rich to use the progress bar")
|
435 |
+
# generator = tqdm(generator)
|
436 |
+
|
437 |
+
try:
|
438 |
+
# for _ in generator:
|
439 |
+
while len(episode_rewards) < n_episodes:
|
440 |
+
action, lstm_states = model.predict(
|
441 |
+
obs, # type: ignore[arg-type]
|
442 |
+
state=lstm_states,
|
443 |
+
episode_start=episode_start,
|
444 |
+
deterministic=deterministic,
|
445 |
+
)
|
446 |
+
obs, reward, done, infos = env.step(action)
|
447 |
+
|
448 |
+
episode_start = done
|
449 |
+
|
450 |
+
if not no_render:
|
451 |
+
env.render("human")
|
452 |
+
|
453 |
+
episode_reward += reward[0]
|
454 |
+
ep_len += 1
|
455 |
+
|
456 |
+
if n_envs == 1:
|
457 |
+
# For atari the return reward is not the atari score
|
458 |
+
# so we have to get it from the infos dict
|
459 |
+
if is_atari and infos is not None and verbose >= 1:
|
460 |
+
episode_infos = infos[0].get("episode")
|
461 |
+
if episode_infos is not None:
|
462 |
+
logger.info(f"Atari Episode Score: {episode_infos['r']:.2f}")
|
463 |
+
logger.info("Atari Episode Length", episode_infos["l"])
|
464 |
+
|
465 |
+
if done and not is_atari and verbose > 0:
|
466 |
+
# NOTE: for env using VecNormalize, the mean reward
|
467 |
+
# is a normalized reward when `--norm_reward` flag is passed
|
468 |
+
logger.info(f"Episode Reward: {episode_reward:.2f}")
|
469 |
+
logger.info("Episode Length", ep_len)
|
470 |
+
episode_rewards.append(episode_reward)
|
471 |
+
episode_lengths.append(ep_len)
|
472 |
+
episode_reward = 0.0
|
473 |
+
ep_len = 0
|
474 |
+
|
475 |
+
# Reset also when the goal is achieved when using HER
|
476 |
+
if done and infos[0].get("is_success") is not None:
|
477 |
+
if verbose > 1:
|
478 |
+
logger.info("Success?", infos[0].get("is_success", False))
|
479 |
+
|
480 |
+
if infos[0].get("is_success") is not None:
|
481 |
+
successes.append(infos[0].get("is_success", False))
|
482 |
+
episode_reward, ep_len = 0.0, 0
|
483 |
+
|
484 |
+
except KeyboardInterrupt:
|
485 |
+
pass
|
486 |
+
|
487 |
+
if verbose > 0 and len(successes) > 0:
|
488 |
+
logger.info(f"Success rate: {100 * np.mean(successes):.2f}%")
|
489 |
+
|
490 |
+
if verbose > 0 and len(episode_rewards) > 0:
|
491 |
+
logger.info(f"{len(episode_rewards)} Episodes")
|
492 |
+
logger.info(f"Mean reward: {np.mean(episode_rewards):.2f} +/- {np.std(episode_rewards):.2f}")
|
493 |
+
|
494 |
+
if verbose > 0 and len(episode_lengths) > 0:
|
495 |
+
logger.info(f"Mean episode length: {np.mean(episode_lengths):.2f} +/- {np.std(episode_lengths):.2f}")
|
496 |
+
|
497 |
+
env.close()
|
498 |
+
|
499 |
+
return episode_rewards
|
500 |
+
|
501 |
+
|
502 |
+
logger = setup_logger(__name__)
|
503 |
+
|
504 |
+
API = HfApi(token=os.environ.get("TOKEN"))
|
505 |
+
RESULTS_REPO = "open-rl-leaderboard/results"
|
506 |
+
|
507 |
+
|
508 |
+
def _backend_routine():
|
509 |
+
# List only the text classification models
|
510 |
+
rl_models = list(API.list_models(filter=["reinforcement-learning", "stable-baselines3"]))
|
511 |
+
logger.info(f"Found {len(rl_models)} RL models")
|
512 |
+
compatible_models = []
|
513 |
+
for model in rl_models:
|
514 |
+
compatible_models.append((model.modelId, model.sha))
|
515 |
+
|
516 |
+
logger.info(f"Found {len(compatible_models)} compatible models")
|
517 |
+
|
518 |
+
# Get the results
|
519 |
+
pattern = re.compile(r"^[^/]*/[^/]*/[^/]*results_[a-f0-9]+\.json$")
|
520 |
+
filenames = API.list_repo_files(RESULTS_REPO, repo_type="dataset")
|
521 |
+
filenames = [filename for filename in filenames if pattern.match(filename)]
|
522 |
+
|
523 |
+
evaluated_models = set()
|
524 |
+
for filename in filenames:
|
525 |
+
path = API.hf_hub_download(repo_id=RESULTS_REPO, filename=filename, repo_type="dataset")
|
526 |
+
with open(path) as fp:
|
527 |
+
report = json.load(fp)
|
528 |
+
evaluated_models.add((report["config"]["model_id"], report["config"]["model_sha"]))
|
529 |
+
|
530 |
+
# Find the models that are not associated with any results
|
531 |
+
pending_models = list(set(compatible_models) - evaluated_models)
|
532 |
+
logger.info(f"Found {len(pending_models)} pending models")
|
533 |
+
|
534 |
+
if len(pending_models) == 0:
|
535 |
+
return None
|
536 |
+
|
537 |
+
# Run an evaluation on the models
|
538 |
+
with tempfile.TemporaryDirectory() as tmp_dir:
|
539 |
+
for model_id, sha in pending_models:
|
540 |
+
time.sleep(60)
|
541 |
+
commits = []
|
542 |
+
model_info = API.model_info(model_id, revision=sha)
|
543 |
+
|
544 |
+
# Extract the environment IDs from the tags (usually only one)
|
545 |
+
env_ids = pattern_match(model_info.tags, ALL_ENV_IDS)
|
546 |
+
if len(env_ids) == 0:
|
547 |
+
logger.error(f"No environment found for {model_id}")
|
548 |
+
continue
|
549 |
+
else:
|
550 |
+
env = env_ids[0]
|
551 |
+
user_id, repo_name = model_id.split("/")
|
552 |
+
algo = model_info.model_index[0]["name"].lower()
|
553 |
+
|
554 |
+
logger.info(f"Running evaluation on {model_id}")
|
555 |
+
report = {"config": {"model_id": model_id, "model_sha": sha}}
|
556 |
+
try:
|
557 |
+
episodic_returns = evaluate(
|
558 |
+
user_id, repo_name, env, "rl-trained-agents", algo, no_render=True, verbose=1
|
559 |
+
)
|
560 |
+
evaluations = {env: {"episodic_returns": episodic_returns}}
|
561 |
+
except Exception as e:
|
562 |
+
logger.error(f"Error evaluating {model_id}: {e}")
|
563 |
+
evaluations = None
|
564 |
+
|
565 |
+
if evaluations is not None:
|
566 |
+
report["results"] = evaluations
|
567 |
+
report["status"] = "DONE"
|
568 |
+
else:
|
569 |
+
report["status"] = "FAILED"
|
570 |
+
|
571 |
+
# Update the results
|
572 |
+
dumped = json.dumps(report, indent=2)
|
573 |
+
path_in_repo = f"{model_id}/results_{sha}.json"
|
574 |
+
local_path = os.path.join(tmp_dir, path_in_repo)
|
575 |
+
os.makedirs(os.path.dirname(local_path), exist_ok=True)
|
576 |
+
with open(local_path, "w") as f:
|
577 |
+
f.write(dumped)
|
578 |
+
|
579 |
+
commits.append(CommitOperationAdd(path_in_repo=path_in_repo, path_or_fileobj=local_path))
|
580 |
+
|
581 |
+
API.create_commit(
|
582 |
+
repo_id=RESULTS_REPO, commit_message="Add evaluation results", operations=commits, repo_type="dataset"
|
583 |
+
)
|
584 |
+
|
585 |
+
|
586 |
+
def backend_routine():
|
587 |
+
try:
|
588 |
+
_backend_routine()
|
589 |
+
except Exception as e:
|
590 |
+
logger.error(f"{e.__class__.__name__}: {str(e)}")
|
591 |
+
|
592 |
+
|
593 |
+
if __name__ == "__main__":
|
594 |
+
backend_routine()
|
src/logging.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
|
3 |
+
proj_dir = Path(__file__).parents[1]
|
4 |
+
|
5 |
+
log_file = proj_dir / "output.log"
|
6 |
+
|
7 |
+
|
8 |
+
import logging
|
9 |
+
|
10 |
+
|
11 |
+
def setup_logger(name: str):
|
12 |
+
logger = logging.getLogger(name)
|
13 |
+
logger.setLevel(logging.INFO)
|
14 |
+
|
15 |
+
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
|
16 |
+
|
17 |
+
# Create a file handler to write logs to a file
|
18 |
+
file_handler = logging.FileHandler(log_file)
|
19 |
+
file_handler.setLevel(logging.INFO)
|
20 |
+
file_handler.setFormatter(formatter)
|
21 |
+
logger.addHandler(file_handler)
|
22 |
+
|
23 |
+
return logger
|
24 |
+
|
25 |
+
|
26 |
+
def configure_root_logger():
|
27 |
+
# Configure the root logger
|
28 |
+
logging.basicConfig(level=logging.INFO)
|
29 |
+
root_logger = logging.getLogger()
|
30 |
+
|
31 |
+
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
|
32 |
+
|
33 |
+
file_handler = logging.FileHandler(log_file)
|
34 |
+
file_handler.setLevel(logging.INFO)
|
35 |
+
file_handler.setFormatter(formatter)
|
36 |
+
|
37 |
+
root_logger.addHandler(file_handler)
|