Spaces:
Runtime error
Runtime error
patrickvonplaten
commited on
Commit
•
d27cdb4
1
Parent(s):
d021c86
improve
Browse files- app.py +142 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from datetime import datetime
|
3 |
+
import json
|
4 |
+
from huggingface_hub import snapshot_download
|
5 |
+
from collections import defaultdict
|
6 |
+
import pandas as pd
|
7 |
+
import streamlit as st
|
8 |
+
from datetime import datetime, timedelta
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
|
11 |
+
user_input = st.text_input("Enter your text here:")
|
12 |
+
|
13 |
+
libraries = [
|
14 |
+
"open-source-metrics/accelerate-dependents",
|
15 |
+
"open-source-metrics/hub-docs-dependents",
|
16 |
+
"open-source-metrics/huggingface_hub-dependents",
|
17 |
+
"open-source-metrics/evaluate-dependents",
|
18 |
+
"open-source-metrics/datasets-dependents",
|
19 |
+
"open-source-metrics/pytorch-image-models-dependents",
|
20 |
+
"open-source-metrics/tokenizers-dependents",
|
21 |
+
"open-source-metrics/transformers-dependents",
|
22 |
+
"open-source-metrics/diffusers-dependents",
|
23 |
+
"open-source-metrics/gradio-dependents",
|
24 |
+
"open-source-metrics/optimum-dependents",
|
25 |
+
"open-source-metrics/accelerate-dependents",
|
26 |
+
]
|
27 |
+
|
28 |
+
option = st.selectbox(
|
29 |
+
'Choose library',
|
30 |
+
libraries
|
31 |
+
)
|
32 |
+
|
33 |
+
cached_folder = snapshot_download("open-source-metrics/transformers-dependents", repo_type="dataset")
|
34 |
+
|
35 |
+
num_dependents = defaultdict(int)
|
36 |
+
num_stars_all_dependents = defaultdict(int)
|
37 |
+
|
38 |
+
def load_json_files(directory):
|
39 |
+
for subdir, dirs, files in os.walk(directory):
|
40 |
+
for file in files:
|
41 |
+
if file.endswith('.json'):
|
42 |
+
file_path = os.path.join(subdir, file)
|
43 |
+
date = "_".join(file_path.split(".")[-2].split("/")[-3:])
|
44 |
+
with open(file_path, 'r') as f:
|
45 |
+
data = json.load(f)
|
46 |
+
# Process the JSON data as needed
|
47 |
+
if "name" in data and "stars" in data:
|
48 |
+
num_dependents[date] = len(data["name"])
|
49 |
+
num_stars_all_dependents[date] = sum(data["stars"])
|
50 |
+
|
51 |
+
# Replace 'your_directory_path' with the path to the directory containing your '11' and '12' folders
|
52 |
+
load_json_files(cached_folder)
|
53 |
+
|
54 |
+
def sort_dict_by_date(d):
|
55 |
+
# Convert date strings to datetime objects and sort
|
56 |
+
sorted_tuples = sorted(d.items(), key=lambda x: datetime.strptime(x[0], '%Y_%m_%d'))
|
57 |
+
# Convert back to dictionary if needed
|
58 |
+
return defaultdict(int, sorted_tuples)
|
59 |
+
|
60 |
+
def remove_incorrect_entries(data):
|
61 |
+
# Convert string dates to datetime objects for easier comparison
|
62 |
+
sorted_data = sorted(data.items(), key=lambda x: datetime.strptime(x[0], '%Y_%m_%d'))
|
63 |
+
|
64 |
+
# Initialize a new dictionary to store the corrected data
|
65 |
+
corrected_data = defaultdict(int)
|
66 |
+
|
67 |
+
# Variable to keep track of the number of dependents on the previous date
|
68 |
+
previous_dependents = None
|
69 |
+
|
70 |
+
for date, dependents in sorted_data:
|
71 |
+
# If the current number of dependents is not less than the previous, add it to the corrected data
|
72 |
+
if previous_dependents is None or dependents >= previous_dependents:
|
73 |
+
corrected_data[date] = dependents
|
74 |
+
previous_dependents = dependents
|
75 |
+
|
76 |
+
return corrected_data
|
77 |
+
|
78 |
+
def interpolate_missing_dates(data):
|
79 |
+
# Convert string dates to datetime objects
|
80 |
+
temp_data = {datetime.strptime(date, '%Y_%m_%d'): value for date, value in data.items()}
|
81 |
+
|
82 |
+
# Find the min and max dates to establish the range
|
83 |
+
min_date, max_date = min(temp_data.keys()), max(temp_data.keys())
|
84 |
+
|
85 |
+
# Generate a date range
|
86 |
+
current_date = min_date
|
87 |
+
while current_date <= max_date:
|
88 |
+
# If the current date is missing
|
89 |
+
if current_date not in temp_data:
|
90 |
+
# Find previous and next dates that are present
|
91 |
+
prev_date = current_date - timedelta(days=1)
|
92 |
+
next_date = current_date + timedelta(days=1)
|
93 |
+
while prev_date not in temp_data:
|
94 |
+
prev_date -= timedelta(days=1)
|
95 |
+
while next_date not in temp_data:
|
96 |
+
next_date += timedelta(days=1)
|
97 |
+
|
98 |
+
# Linear interpolation
|
99 |
+
prev_value = temp_data[prev_date]
|
100 |
+
next_value = temp_data[next_date]
|
101 |
+
interpolated_value = prev_value + ((next_value - prev_value) * ((current_date - prev_date) / (next_date - prev_date)))
|
102 |
+
temp_data[current_date] = interpolated_value
|
103 |
+
|
104 |
+
current_date += timedelta(days=1)
|
105 |
+
|
106 |
+
# Convert datetime objects back to string format
|
107 |
+
interpolated_data = defaultdict(int, {date.strftime('%Y_%m_%d'): int(value) for date, value in temp_data.items()})
|
108 |
+
|
109 |
+
return interpolated_data
|
110 |
+
|
111 |
+
num_dependents = remove_incorrect_entries(num_dependents)
|
112 |
+
num_stars_all_dependents = remove_incorrect_entries(num_stars_all_dependents)
|
113 |
+
|
114 |
+
num_dependents = interpolate_missing_dates(num_dependents)
|
115 |
+
num_stars_all_dependents = interpolate_missing_dates(num_stars_all_dependents)
|
116 |
+
|
117 |
+
num_dependents = sort_dict_by_date(num_dependents)
|
118 |
+
num_stars_all_dependents = sort_dict_by_date(num_stars_all_dependents)
|
119 |
+
|
120 |
+
num_dependents_df = pd.DataFrame(list(num_dependents.items()), columns=['Date', 'Value'])
|
121 |
+
num_cum_stars_df = pd.DataFrame(list(num_stars_all_dependents.items()), columns=['Date', 'Value'])
|
122 |
+
|
123 |
+
num_dependents_df['Date'] = pd.to_datetime(num_dependents_df['Date'], format='%Y_%m_%d')
|
124 |
+
num_cum_stars_df['Date'] = pd.to_datetime(num_cum_stars_df['Date'], format='%Y_%m_%d')
|
125 |
+
|
126 |
+
num_dependents_df.set_index('Date', inplace=True)
|
127 |
+
num_dependents_df = num_dependents_df.resample('D').asfreq()
|
128 |
+
num_dependents_df['Value'] = num_dependents_df['Value'].interpolate()
|
129 |
+
|
130 |
+
num_cum_stars_df.set_index('Date', inplace=True)
|
131 |
+
num_cum_stars_df = num_cum_stars_df.resample('D').asfreq()
|
132 |
+
num_cum_stars_df['Value'] = num_cum_stars_df['Value'].interpolate()
|
133 |
+
|
134 |
+
# Plotting
|
135 |
+
plt.figure(figsize=(10, 6))
|
136 |
+
plt.plot(num_dependents_df.index, num_dependents_df['Value'], marker='o')
|
137 |
+
plt.xlabel('Date')
|
138 |
+
plt.ylabel('Number of Dependents')
|
139 |
+
plt.title('Dependencies History')
|
140 |
+
|
141 |
+
# Display in Streamlit
|
142 |
+
st.pyplot(plt)
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
matplotlib
|