File size: 1,244 Bytes
ed4afda
 
b29fd2d
7d9cce6
ed4afda
 
7d9cce6
b29fd2d
 
ed4afda
 
b29fd2d
 
ed4afda
7d9cce6
b29fd2d
 
 
 
 
 
ed4afda
7d9cce6
b29fd2d
 
 
 
 
 
 
 
 
 
 
 
ed4afda
7d9cce6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import gradio as gr

from leaderboard.dataset import get_leaderboard_df
from leaderboard.submission import submit_model


def display_leaderboard():
    df = get_leaderboard_df()
    return df


with gr.Blocks() as app:
    gr.Markdown("# human_methylation_bench_ver1 Leaderboard")

    with gr.Tab("Leaderboard"):
        leaderboard_df = gr.DataFrame(
            value=display_leaderboard(),
            headers=["Model Name", "Score (relative_error_loss)", "Rank"],
            interactive=False,
            label="Leaderboard",
        )

    with gr.Tab("Submit Model"):
        model_name_input = gr.Textbox(label="Model Name", placeholder="e.g. My Great Model")
        model_url_input = gr.Textbox(
            label="Hugging Face Model Joblib URL",
            placeholder="e.g. https://huggingface.co/username/model/resolve/main/model.joblib",
        )
        submit_button = gr.Button("Submit")

        submission_output = gr.DataFrame(
            headers=["Model Name", "Score (relative_error_loss)", "Rank"], interactive=False, label="Updated Leaderboard"
        )

        submit_button.click(submit_model, inputs=[model_name_input, model_url_input], outputs=submission_output)

if __name__ == "__main__":
    app.launch()