Spaces:
Build error
Build error
File size: 12,996 Bytes
fdda1da 12ca36b 96e83f4 12ca36b bcea7da 12ca36b bcea7da 12ca36b bcea7da 12ca36b fdda1da 12ca36b 96e83f4 12ca36b fdda1da 12ca36b fdda1da 12ca36b fdda1da 12ca36b fdda1da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
import gradio as gr
import plotly.graph_objects as go
# import ee
# # import geemap
# # GEE
# service_account = 'climatebase-july-2023@ee-geospatialml-aquarry.iam.gserviceaccount.com'
# credentials = ee.ServiceAccountCredentials(service_account, 'service_account.json')
# ee.Initialize(credentials)
# # Gradio dataset
# dataset = load_dataset("gradio/NYC-Airbnb-Open-Data", split="train")
# df = dataset.to_pandas()
import os
import duckdb
import pandas as pd
import datetime
import ee
# import geemap
import yaml
# Define constants
MD_SERVICE_TOKEN = 'md_service_token.txt'
# to-do: set-up with papermill parameters
DATE='2020-01-01'
YEAR = 2020
LOCATION=[-74.653370, 5.845328]
ROI_RADIUS = 20000
GEE_SERVICE_ACCOUNT = 'climatebase-july-2023@ee-geospatialml-aquarry.iam.gserviceaccount.com'
GEE_SERVICE_ACCOUNT_CREDENTIALS_FILE = 'ee_service_account.json'
INDICES_FILE = 'indices.yaml'
START_YEAR = 2015
END_YEAR = 2022
class IndexGenerator:
"""
A class to generate indices and compute zonal means.
Args:
centroid (tuple): The centroid coordinates (latitude, longitude) of the region of interest.
year (int): The year for which indices are generated.
roi_radius (int, optional): The radius (in meters) for creating a buffer around the centroid as the region of interest. Defaults to 20000.
project_name (str, optional): The name of the project. Defaults to "".
map (geemap.Map, optional): Map object for mapping. Defaults to None (i.e. no map created)
"""
def __init__(self,
centroid,
roi_radius,
year,
indices_file,
project_name="",
map = None,
):
self.indices = self._load_indices(indices_file)
self.centroid = centroid
self.roi = ee.Geometry.Point(*centroid).buffer(roi_radius)
self.year = year
self.start_date = str(datetime.date(self.year, 1, 1))
self.end_date = str(datetime.date(self.year, 12, 31))
self.daterange=[self.start_date, self.end_date]
self.project_name=project_name
self.map = map
if self.map is not None:
self.show = True
else:
self.show = False
def _cloudfree(self, gee_path):
"""
Internal method to generate a cloud-free composite.
Args:
gee_path (str): The path to the Google Earth Engine (GEE) image or image collection.
Returns:
ee.Image: The cloud-free composite clipped to the region of interest.
"""
# Load a raw Landsat ImageCollection for a single year.
collection = (
ee.ImageCollection(gee_path)
.filterDate(*self.daterange)
.filterBounds(self.roi)
)
# Create a cloud-free composite with custom parameters for cloud score threshold and percentile.
composite_cloudfree = ee.Algorithms.Landsat.simpleComposite(**{
'collection': collection,
'percentile': 75,
'cloudScoreRange': 5
})
return composite_cloudfree.clip(self.roi)
def _load_indices(self, indices_file):
# Read index configurations
with open(indices_file, 'r') as stream:
try:
return yaml.safe_load(stream)
except yaml.YAMLError as e:
print(e)
return None
def show_map(self, map=None):
if map is not None:
self.map = map
self.show = True
def disable_map(self):
self.show = False
def generate_index(self, index_config):
"""
Generates an index based on the provided index configuration.
Args:
index_config (dict): Configuration for generating the index.
Returns:
ee.Image: The generated index clipped to the region of interest.
"""
match index_config["gee_type"]:
case 'image':
dataset = ee.Image(index_config['gee_path']).clip(self.roi)
if index_config.get('select'):
dataset = dataset.select(index_config['select'])
case 'image_collection':
dataset = ee.ImageCollection(index_config['gee_path']).filterBounds(self.roi).map(lambda image: image.clip(self.roi)).mean()
if index_config.get('select'):
dataset = dataset.select(index_config['select'])
case 'feature_collection':
dataset = ee.Image().float().paint(ee.FeatureCollection(index_config['gee_path']), index_config['select']).clip(self.roi)
case 'algebraic':
image = self._cloudfree(index_config['gee_path'])
dataset = image.normalizedDifference(['B4', 'B3'])
case _:
dataset=None
if not dataset:
raise Exception("Failed to generate dataset.")
if self.show and index_config.get('show'):
map.addLayer(dataset, index_config['viz'], index_config['name'])
print(f"Generated index: {index_config['name']}")
return dataset
def zonal_mean_index(self, index_key):
index_config = self.indices[index_key]
dataset = self.generate_index(index_config)
# zm = self._zonal_mean(single, index_config.get('bandname') or 'constant')
out = dataset.reduceRegion(**{
'reducer': ee.Reducer.mean(),
'geometry': self.roi,
'scale': 200 # map scale
}).getInfo()
if index_config.get('bandname'):
return out[index_config.get('bandname')]
return out
def generate_composite_index_df(self, indices=[]):
data={
"metric": indices,
"year":self.year,
"centroid": str(self.centroid),
"project_name": self.project_name,
"value": list(map(self.zonal_mean_index, indices)),
"area": roi.area().getInfo(), # m^2
"geojson": str(roi.getInfo()),
}
print('data', data)
df = pd.DataFrame(data)
return df
def set_up_duckdb(service_token_file=None):
print('set up duckdb')
# use `climatebase` db
if not os.getenv('motherduck_token');
raise Exception('No motherduck token found. Please set the `motherduck_token` environment variable.')
else:
con = duckdb.connect('md:climatebase')
con = duckdb.connect(':climatebase:')
con.sql("USE climatebase;")
# load extensions
con.sql("""INSTALL spatial; LOAD spatial;""")
return con
def authenticate_gee(gee_service_account, gee_service_account_credentials_file):
print('authenticate_gee')
# to-do: alert if dataset filter date nan
credentials = ee.ServiceAccountCredentials(gee_service_account, gee_service_account_credentials_file)
ee.Initialize(credentials)
def load_indices(indices_file):
# Read index configurations
with open(indices_file, 'r') as stream:
try:
return yaml.safe_load(stream)
except yaml.YAMLError as e:
print(e)
return None
def create_dataframe(years, project_name):
dfs=[]
print(years)
indices = load_indices(INDICES_FILE)
for year in years:
print(year)
ig = IndexGenerator(centroid=LOCATION, roi_radius=ROI_RADIUS, year=year, indices_file=INDICES_FILE, project_name=project_name)
df = ig.generate_composite_index_df(list(indices.keys()))
dfs.append(df)
return pd.concat(dfs)
# def preview_table():
# con.sql("FROM bioindicator;").show()
# if __name__ == '__main__':
# Map = geemap.Map()
# # Create a cloud-free composite with custom parameters for cloud score threshold and percentile.
# composite_cloudfree = ee.Algorithms.Landsat.simpleComposite(**{
# 'collection': collection,
# 'percentile': 75,
# 'cloudScoreRange': 5
# })
# Map.addLayer(composite_cloudfree, {'bands': ['B4', 'B3', 'B2'], 'max': 128}, 'Custom TOA composite')
# Map.centerObject(roi, 14)
# ig = IndexGenerator(centroid=LOCATION, year=2015, indices_file=INDICES_FILE, project_name='Test Project', map=Map)
# dataset = ig.generate_index(indices['Air'])
# minMax = dataset.clip(roi).reduceRegion(
# geometry = roi,
# reducer = ee.Reducer.minMax(),
# scale= 3000,
# maxPixels= 10e3,
# )
# minMax.getInfo()
def calculate_biodiversity_score(start_year, end_year, project_name):
years = []
for year in range(start_year, end_year):
row_exists = con.sql(f"SELECT COUNT(1) FROM bioindicator WHERE (year = {year} AND project_name = '{project_name}')").fetchall()[0][0]
if not row_exists:
years.append(year)
if len(years)>0:
df = create_dataframe(years, project_name)
# con.sql('FROM df LIMIT 5').show()
# Write score table to `_temptable`
con.sql('CREATE OR REPLACE TABLE _temptable AS SELECT *, (value * area) AS score FROM (SELECT year, project_name, AVG(value) AS value, area FROM df GROUP BY year, project_name, area ORDER BY project_name)')
# Create `bioindicator` table IF NOT EXISTS.
con.sql("""
USE climatebase;
CREATE TABLE IF NOT EXISTS bioindicator (year BIGINT, project_name VARCHAR(255), value DOUBLE, area DOUBLE, score DOUBLE, CONSTRAINT unique_year_project_name UNIQUE (year, project_name));
""")
return con.sql(f"SELECT * FROM bioindicator WHERE (year > {start_year} AND year <= {end_year} AND project_name = '{project_name}')").df()
def view_all():
print('view_all')
return con.sql(f"SELECT * FROM bioindicator").df()
def push_to_md():
# UPSERT project record
con.sql("""
INSERT INTO bioindicator FROM _temptable
ON CONFLICT (year, project_name) DO UPDATE SET value = excluded.value;
""")
print('Saved records')
# preview_table()
def filter_map(min_price, max_price, boroughs):
filtered_df = df[(df['neighbourhood_group'].isin(boroughs)) &
(df['price'] > min_price) & (df['price'] < max_price)]
names = filtered_df["name"].tolist()
prices = filtered_df["price"].tolist()
text_list = [(names[i], prices[i]) for i in range(0, len(names))]
fig = go.Figure(go.Scattermapbox(
customdata=text_list,
lat=filtered_df['latitude'].tolist(),
lon=filtered_df['longitude'].tolist(),
mode='markers',
marker=go.scattermapbox.Marker(
size=6
),
hoverinfo="text",
hovertemplate='<b>Name</b>: %{customdata[0]}<br><b>Price</b>: $%{customdata[1]}'
))
fig.update_layout(
mapbox_style="open-street-map",
hovermode='closest',
mapbox=dict(
bearing=0,
center=go.layout.mapbox.Center(
lat=40.67,
lon=-73.90
),
pitch=0,
zoom=9
),
)
return fig
with gr.Blocks() as demo:
con = set_up_duckdb(MD_SERVICE_TOKEN)
authenticate_gee(GEE_SERVICE_ACCOUNT, GEE_SERVICE_ACCOUNT_CREDENTIALS_FILE)
# Create circle buffer over point
# roi = ee.Geometry.Point(*LOCATION).buffer(ROI_RADIUS)
# # Load a raw Landsat ImageCollection for a single year.
# start_date = str(datetime.date(YEAR, 1, 1))
# end_date = str(datetime.date(YEAR, 12, 31))
# collection = (
# ee.ImageCollection('LANDSAT/LC08/C02/T1')
# .filterDate(start_date, end_date)
# .filterBounds(roi)
# )
# indices = load_indices(INDICES_FILE)
# push_to_md(START_YEAR, END_YEAR, 'Test Project')
with gr.Column():
# map = gr.Plot().style()
with gr.Row():
start_year = gr.Number(value=2017, label="Start Year", precision=0)
end_year = gr.Number(value=2022, label="End Year", precision=0)
project_name = gr.Textbox(label='Project Name')
# boroughs = gr.CheckboxGroup(choices=["Queens", "Brooklyn", "Manhattan", "Bronx", "Staten Island"], value=["Queens", "Brooklyn"], label="Select Methodology:")
# btn = gr.Button(value="Update Filter")
with gr.Row():
calc_btn = gr.Button(value="Calculate!")
view_btn = gr.Button(value="View all")
save_btn = gr.Button(value="Save")
results_df = gr.Dataframe(
headers=["Year", "Project Name", "Score"],
datatype=["number", "str", "number"],
label="Biodiversity scores by year",
)
# demo.load(filter_map, [min_price, max_price, boroughs], map)
# btn.click(filter_map, [min_price, max_price, boroughs], map)
calc_btn.click(calculate_biodiversity_score, inputs=[start_year, end_year, project_name], outputs=results_df)
view_btn.click(view_all, outputs=results_df)
save_btn.click(push_to_md)
demo.launch()
|