File size: 11,368 Bytes
3683a4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49af784
 
3683a4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a0f6c2
3683a4c
6a0f6c2
 
3683a4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a0f6c2
 
3683a4c
 
 
6a0f6c2
 
3683a4c
6a0f6c2
 
3683a4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a0f6c2
3683a4c
 
6a0f6c2
 
 
 
 
 
 
 
3683a4c
 
 
6a0f6c2
3683a4c
6a0f6c2
 
 
 
 
 
 
 
3683a4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a0f6c2
 
3683a4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a0f6c2
3683a4c
 
6a0f6c2
3683a4c
 
 
 
 
 
 
 
 
49af784
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import datetime
import json
import os
from itertools import repeat

import ee
import numpy as np
import pandas as pd
import plotly.graph_objects as go
import yaml

from utils import duckdb_queries as dq

from . import logging

GEE_SERVICE_ACCOUNT = "climatebase-july-2023@ee-geospatialml-aquarry.iam.gserviceaccount.com"
INDICES_FILE = "indices.yaml"


class IndexGenerator:
    """
    A class to generate indices and compute zonal means.

        Args:
            map (geemap.Map, optional): Map object for mapping. Defaults to None (i.e. no map created)
    """

    def __init__(
        self,
        map=None,
    ):
        # Authenticate to GEE & DuckDB
        self._authenticate_ee(GEE_SERVICE_ACCOUNT)

        # Set instance variables
        self.indices = self._load_indices(INDICES_FILE)
        self.map = map
        self.show = True if self.map is not None else False


    def _cloudfree(self, gee_path, daterange):
        """
        Internal method to generate a cloud-free composite.

        Args:
            gee_path (str): The path to the Google Earth Engine (GEE) image or image collection.

        Returns:
            ee.Image: The cloud-free composite clipped to the region of interest.
        """
        # Load a raw Landsat ImageCollection for a single year.
        collection = (
            ee.ImageCollection(gee_path).filterDate(*daterange).filterBounds(self.roi)
        )

        # Create a cloud-free composite with custom parameters for cloud score threshold and percentile.
        composite_cloudfree = ee.Algorithms.Landsat.simpleComposite(
            **{"collection": collection, "percentile": 75, "cloudScoreRange": 5}
        )
        return composite_cloudfree.clip(self.roi)

    def _load_indices(self, indices_file):
        # Read index configurations
        with open(indices_file, "r") as stream:
            try:
                return yaml.safe_load(stream)
            except yaml.YAMLError as e:
                logging.error(e)
                return None

    def generate_index(self, index_config, year):
        """
        Generates an index based on the provided index configuration.

        Args:
            index_config (dict): Configuration for generating the index.

        Returns:
            ee.Image: The generated index clipped to the region of interest.
        """

        # Calculate date range, assume 1 year
        start_date = str(datetime.date(year, 1, 1))
        end_date = str(datetime.date(year, 12, 31))
        daterange = [start_date, end_date]

        # Calculate index based on type
        match index_config["gee_type"]:
            case "image":
                dataset = ee.Image(index_config["gee_path"]).clip(self.roi)
                if index_config.get("select"):
                    dataset = dataset.select(index_config["select"])
            case "image_collection":
                dataset = (
                    ee.ImageCollection(index_config["gee_path"])
                    .filterBounds(self.roi)
                    .map(lambda image: image.clip(self.roi))
                    .mean()
                )
                if index_config.get("select"):
                    dataset = dataset.select(index_config["select"])
            case "feature_collection":
                dataset = (
                    ee.Image()
                    .float()
                    .paint(
                        ee.FeatureCollection(index_config["gee_path"]),
                        index_config["select"],
                    )
                    .clip(self.roi)
                )
            case "algebraic":
                image = self._cloudfree(index_config["gee_path"], daterange)
                # to-do: params should come from index_config
                dataset = image.normalizedDifference(["B4", "B3"])
            case _:
                dataset = None

        if not dataset:
            raise Exception("Failed to generate dataset.")

        # Whether to display on GEE map
        if self.show and index_config.get("show"):
            map.addLayer(dataset, index_config["viz"], index_config["name"])

        logging.info(f"Generated index: {index_config['name']}")
        return dataset

    def zonal_mean_index(self, index_key, year):
        index_config = self.indices[index_key]
        dataset = self.generate_index(index_config, year)
        # zm = self._zonal_mean(single, index_config.get('bandname') or 'constant')
        out = dataset.reduceRegion(
            **{
                "reducer": ee.Reducer.mean(),
                "geometry": self.roi,
                "scale": 200,  # map scale
            }
        ).getInfo()
        if index_config.get("bandname"):
            return out[index_config.get("bandname")]
        return out

    def generate_composite_index_df(self, year, project_geometry, indices=[]):
        
        data = {
            "metric": indices,
            "year": year,
            "centroid": "",
            "project_name": "",
            "value": list(map(self.zonal_mean_index, indices, repeat(year))),
            "area": self.roi.area().getInfo(),  # m^2 to-do: calculate with duckdb
            "geojson": "",
            # to-do: coefficient
        }

        logging.info("data", data)
        df = pd.DataFrame(data)
        return df

    @staticmethod
    def _authenticate_ee(ee_service_account):
        """
        Huggingface Spaces does not support secret files, therefore authenticate with an environment variable containing the JSON.
        """
        logging.info("Authenticating to Google Earth Engine...")
        credentials = ee.ServiceAccountCredentials(
            ee_service_account, key_data=os.environ["ee_service_account"]
        )
        ee.Initialize(credentials)
        logging.info("Authenticated to Google Earth Engine.")

    def _calculate_yearly_index(self, years, project_name):
        dfs = []
        logging.info(years)
        project_geometry = dq.get_project_geometry(project_name)
        project_centroid = dq.get_project_centroid(project_name)
        # to-do: refactor to involve less transformations
        _polygon = json.dumps(json.loads(project_geometry[0][0])['features'][0]['geometry'])
        # to-do: don't use self.roi and instead pass patameter strategically
        self.roi = ee.Geometry.Polygon(json.loads(_polygon)['coordinates'])

        # to-do: pararelize?
        for year in years:
            logging.info(year)
            self.project_name = project_name
            df = self.generate_composite_index_df(year, project_geometry, list(self.indices.keys()))
            dfs.append(df)

        # Concatenate all dataframes
        df_concat = pd.concat(dfs)
        df_concat['centroid'] = project_centroid
        df_concat['project_name'] = project_name
        df_concat['geojson'] = project_geometry
        breakpoint()
        return df_concat

    # h/t: https://community.plotly.com/t/dynamic-zoom-for-mapbox/32658/12
    def _latlon_to_config(self, longitudes=None, latitudes=None):
        """Function documentation:\n
        Basic framework adopted from Krichardson under the following thread:
        https://community.plotly.com/t/dynamic-zoom-for-mapbox/32658/7

        # NOTE:
        # THIS IS A TEMPORARY SOLUTION UNTIL THE DASH TEAM IMPLEMENTS DYNAMIC ZOOM
        # in their plotly-functions associated with mapbox, such as go.Densitymapbox() etc.

        Returns the appropriate zoom-level for these plotly-mapbox-graphics along with
        the center coordinate tuple of all provided coordinate tuples.
        """

        # Check whether both latitudes and longitudes have been passed,
        # or if the list lenghts don't match
        if (latitudes is None or longitudes is None) or (
            len(latitudes) != len(longitudes)
        ):
            # Otherwise, return the default values of 0 zoom and the coordinate origin as center point
            return 0, (0, 0)

        # Get the boundary-box
        b_box = {}
        b_box["height"] = latitudes.max() - latitudes.min()
        b_box["width"] = longitudes.max() - longitudes.min()
        b_box["center"] = (np.mean(longitudes), np.mean(latitudes))

        # get the area of the bounding box in order to calculate a zoom-level
        area = b_box["height"] * b_box["width"]

        # * 1D-linear interpolation with numpy:
        # - Pass the area as the only x-value and not as a list, in order to return a scalar as well
        # - The x-points "xp" should be in parts in comparable order of magnitude of the given area
        # - The zpom-levels are adapted to the areas, i.e. start with the smallest area possible of 0
        # which leads to the highest possible zoom value 20, and so forth decreasing with increasing areas
        # as these variables are antiproportional
        zoom = np.interp(
            x=area,
            xp=[0, 5**-10, 4**-10, 3**-10, 2**-10, 1**-10, 1**-5],
            fp=[20, 15, 14, 13, 12, 7, 5],
        )

        # Finally, return the zoom level and the associated boundary-box center coordinates
        return zoom, b_box["center"]

    def show_project_map(self, project_name):
        project_geometry = dq.get_project_geometry(project_name)
        features = json.loads(project_geometry[0][0].replace("'", '"'))["features"]
        geometry = features[0]["geometry"]
        longitudes = np.array(geometry["coordinates"])[0, :, 0]
        latitudes = np.array(geometry["coordinates"])[0, :, 1]
        zoom, bbox_center = self._latlon_to_config(longitudes, latitudes)
        fig = go.Figure(
            go.Scattermapbox(
                mode="markers",
                lon=[bbox_center[0]],
                lat=[bbox_center[1]],
                marker={"size": 20, "color": ["cyan"]},
            )
        )

        fig.update_layout(
            mapbox={
                "style": "stamen-terrain",
                "center": {"lon": bbox_center[0], "lat": bbox_center[1]},
                "zoom": zoom,
                "layers": [
                    {
                        "source": {
                            "type": "FeatureCollection",
                            "features": [{"type": "Feature", "geometry": geometry}],
                        },
                        "type": "fill",
                        "below": "traces",
                        "color": "royalblue",
                    }
                ],
            },
            margin={"l": 0, "r": 0, "b": 0, "t": 0},
        )

        return fig

    def calculate_biodiversity_score(self, start_year, end_year, project_name):
        years = []
        for year in range(start_year, end_year):
            row_exists = dq.check_if_project_exists_for_year(project_name, year)
            if not row_exists:
                years.append(year)

        if len(years) > 0:
            df = self._calculate_yearly_index(years, project_name)

            # Write score table to `_temptable`
            dq.write_score_to_temptable(df)

            # Create `bioindicator` table IF NOT EXISTS.
            dq.get_or_create_bioindicator_table()

            # UPSERT project record
            dq.upsert_project_record()
            logging.info("upserted records into motherduck")
        scores = dq.get_project_scores(project_name, start_year, end_year)
        return scores