calculator / app.py
pgzmnk
Calculation is functional.
35153c2
raw
history blame
14 kB
import datetime
import json
import logging
import os
import duckdb
import ee
import gradio as gr
import pandas as pd
import plotly.graph_objects as go
import yaml
import numpy as np
from itertools import repeat
from utils.gradio import get_window_url_params
from utils import duckdb_queries as dq
# Logging
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO)
# Define constants
DATE = "2020-01-01"
YEAR = 2020
LOCATION = [-74.653370, 5.845328]
ROI_RADIUS = 20000
GEE_SERVICE_ACCOUNT = (
"climatebase-july-2023@ee-geospatialml-aquarry.iam.gserviceaccount.com"
)
INDICES_FILE = "indices.yaml"
START_YEAR = 2015
END_YEAR = 2022
class IndexGenerator:
"""
A class to generate indices and compute zonal means.
Args:
centroid (tuple): The centroid coordinates (latitude, longitude) of the region of interest.
year (int): The year for which indices are generated.
roi_radius (int, optional): The radius (in meters) for creating a buffer around the centroid as the region of interest. Defaults to 20000.
project_name (str, optional): The name of the project. Defaults to "".
map (geemap.Map, optional): Map object for mapping. Defaults to None (i.e. no map created)
"""
def __init__(
self,
centroid,
roi_radius,
indices_file,
project_name="",
map=None,
):
# Authenticate to GEE & DuckDB
self._authenticate_ee(GEE_SERVICE_ACCOUNT)
# Set instance variables
self.indices = self._load_indices(indices_file)
self.centroid = centroid
self.roi = ee.Geometry.Point(*centroid).buffer(roi_radius)
# self.project_name = project_name
self.map = map
if self.map is not None:
self.show = True
else:
self.show = False
def _cloudfree(self, gee_path, daterange):
"""
Internal method to generate a cloud-free composite.
Args:
gee_path (str): The path to the Google Earth Engine (GEE) image or image collection.
Returns:
ee.Image: The cloud-free composite clipped to the region of interest.
"""
# Load a raw Landsat ImageCollection for a single year.
collection = (
ee.ImageCollection(gee_path).filterDate(*daterange).filterBounds(self.roi)
)
# Create a cloud-free composite with custom parameters for cloud score threshold and percentile.
composite_cloudfree = ee.Algorithms.Landsat.simpleComposite(
**{"collection": collection, "percentile": 75, "cloudScoreRange": 5}
)
return composite_cloudfree.clip(self.roi)
def _load_indices(self, indices_file):
# Read index configurations
with open(indices_file, "r") as stream:
try:
return yaml.safe_load(stream)
except yaml.YAMLError as e:
logging.error(e)
return None
def show_map(self, map=None):
if map is not None:
self.map = map
self.show = True
def disable_map(self):
self.show = False
def generate_index(self, index_config, year):
"""
Generates an index based on the provided index configuration.
Args:
index_config (dict): Configuration for generating the index.
Returns:
ee.Image: The generated index clipped to the region of interest.
"""
# Calculate date range, assume 1 year
start_date = str(datetime.date(year, 1, 1))
end_date = str(datetime.date(year, 12, 31))
daterange = [start_date, end_date]
# Calculate index based on type
match index_config["gee_type"]:
case "image":
dataset = ee.Image(index_config["gee_path"]).clip(self.roi)
if index_config.get("select"):
dataset = dataset.select(index_config["select"])
case "image_collection":
dataset = (
ee.ImageCollection(index_config["gee_path"])
.filterBounds(self.roi)
.map(lambda image: image.clip(self.roi))
.mean()
)
if index_config.get("select"):
dataset = dataset.select(index_config["select"])
case "feature_collection":
dataset = (
ee.Image()
.float()
.paint(
ee.FeatureCollection(index_config["gee_path"]),
index_config["select"],
)
.clip(self.roi)
)
case "algebraic":
image = self._cloudfree(index_config["gee_path"], daterange)
# to-do: params should come from index_config
dataset = image.normalizedDifference(["B4", "B3"])
case _:
dataset = None
if not dataset:
raise Exception("Failed to generate dataset.")
# Whether to display on GEE map
if self.show and index_config.get("show"):
map.addLayer(dataset, index_config["viz"], index_config["name"])
logging.info(f"Generated index: {index_config['name']}")
return dataset
def zonal_mean_index(self, index_key, year):
index_config = self.indices[index_key]
dataset = self.generate_index(index_config, year)
# zm = self._zonal_mean(single, index_config.get('bandname') or 'constant')
out = dataset.reduceRegion(
**{
"reducer": ee.Reducer.mean(),
"geometry": self.roi,
"scale": 200, # map scale
}
).getInfo()
if index_config.get("bandname"):
return out[index_config.get("bandname")]
return out
def generate_composite_index_df(self, year, indices=[]):
data = {
"metric": indices,
"year": year,
"centroid": str(self.centroid),
"project_name": self.project_name,
"value": list(map(self.zonal_mean_index, indices, repeat(year))),
"area": self.roi.area().getInfo(), # m^2
"geojson": str(self.roi.getInfo()),
# to-do: coefficient
}
logging.info("data", data)
df = pd.DataFrame(data)
return df
@staticmethod
def _authenticate_ee(ee_service_account):
"""
Huggingface Spaces does not support secret files, therefore authenticate with an environment variable containing the JSON.
"""
logging.info("Authenticating to Google Earth Engine...")
credentials = ee.ServiceAccountCredentials(
ee_service_account, key_data=os.environ["ee_service_account"]
)
ee.Initialize(credentials)
logging.info("Authenticated to Google Earth Engine.")
def _create_dataframe(self, years, project_name):
dfs = []
logging.info(years)
indices = self._load_indices(INDICES_FILE)
for year in years:
logging.info(year)
indexgenerator.project_name = project_name
df = indexgenerator.generate_composite_index_df(year, list(indices.keys()))
dfs.append(df)
return pd.concat(dfs)
# h/t: https://community.plotly.com/t/dynamic-zoom-for-mapbox/32658/12
def _latlon_to_config(self, longitudes=None, latitudes=None):
"""Function documentation:\n
Basic framework adopted from Krichardson under the following thread:
https://community.plotly.com/t/dynamic-zoom-for-mapbox/32658/7
# NOTE:
# THIS IS A TEMPORARY SOLUTION UNTIL THE DASH TEAM IMPLEMENTS DYNAMIC ZOOM
# in their plotly-functions associated with mapbox, such as go.Densitymapbox() etc.
Returns the appropriate zoom-level for these plotly-mapbox-graphics along with
the center coordinate tuple of all provided coordinate tuples.
"""
# Check whether both latitudes and longitudes have been passed,
# or if the list lenghts don't match
if (latitudes is None or longitudes is None) or (
len(latitudes) != len(longitudes)
):
# Otherwise, return the default values of 0 zoom and the coordinate origin as center point
return 0, (0, 0)
# Get the boundary-box
b_box = {}
b_box["height"] = latitudes.max() - latitudes.min()
b_box["width"] = longitudes.max() - longitudes.min()
b_box["center"] = (np.mean(longitudes), np.mean(latitudes))
# get the area of the bounding box in order to calculate a zoom-level
area = b_box["height"] * b_box["width"]
# * 1D-linear interpolation with numpy:
# - Pass the area as the only x-value and not as a list, in order to return a scalar as well
# - The x-points "xp" should be in parts in comparable order of magnitude of the given area
# - The zpom-levels are adapted to the areas, i.e. start with the smallest area possible of 0
# which leads to the highest possible zoom value 20, and so forth decreasing with increasing areas
# as these variables are antiproportional
zoom = np.interp(
x=area,
xp=[0, 5**-10, 4**-10, 3**-10, 2**-10, 1**-10, 1**-5],
fp=[20, 15, 14, 13, 12, 7, 5],
)
# Finally, return the zoom level and the associated boundary-box center coordinates
return zoom, b_box["center"]
def show_project_map(self, project_name):
prepared_statement = dq.get_project_geometry(project_name)
features = json.loads(prepared_statement[0][0].replace("'", '"'))["features"]
geometry = features[0]["geometry"]
longitudes = np.array(geometry["coordinates"])[0, :, 0]
latitudes = np.array(geometry["coordinates"])[0, :, 1]
zoom, bbox_center = self._latlon_to_config(longitudes, latitudes)
fig = go.Figure(
go.Scattermapbox(
mode="markers",
lon=[bbox_center[0]],
lat=[bbox_center[1]],
marker={"size": 20, "color": ["cyan"]},
)
)
fig.update_layout(
mapbox={
"style": "stamen-terrain",
"center": {"lon": bbox_center[0], "lat": bbox_center[1]},
"zoom": zoom,
"layers": [
{
"source": {
"type": "FeatureCollection",
"features": [{"type": "Feature", "geometry": geometry}],
},
"type": "fill",
"below": "traces",
"color": "royalblue",
}
],
},
margin={"l": 0, "r": 0, "b": 0, "t": 0},
)
return fig
def calculate_biodiversity_score(self, start_year, end_year, project_name):
years = []
for year in range(start_year, end_year):
row_exists = dq.check_if_project_exists_for_year(project_name, year)
if not row_exists:
years.append(year)
if len(years) > 0:
df = self._create_dataframe(years, project_name)
# Write score table to `_temptable`
dq.write_score_to_temptable()
# Create `bioindicator` table IF NOT EXISTS.
dq.get_or_create_bioindicator_table()
# UPSERT project record
dq.upsert_project_record()
logging.info("upserted records into motherduck")
scores = dq.get_project_scores(project_name, start_year, end_year)
return scores
# Instantiate outside gradio app to avoid re-initializing GEE, which is slow
indexgenerator = IndexGenerator(
centroid=LOCATION,
roi_radius=ROI_RADIUS,
indices_file=INDICES_FILE,
)
with gr.Blocks() as demo:
print("start gradio app")
with gr.Column():
m1 = gr.Plot()
with gr.Row():
project_name = gr.Dropdown([], label="Project", value="Select project")
start_year = gr.Number(value=2017, label="Start Year", precision=0)
end_year = gr.Number(value=2022, label="End Year", precision=0)
with gr.Row():
view_btn = gr.Button(value="Show project map")
calc_btn = gr.Button(value="Calculate!")
# save_btn = gr.Button(value="Save")
results_df = gr.Dataframe(
headers=["Year", "Project Name", "Score"],
datatype=["number", "str", "number"],
label="Biodiversity scores by year",
)
calc_btn.click(
indexgenerator.calculate_biodiversity_score,
inputs=[start_year, end_year, project_name],
outputs=results_df,
)
view_btn.click(
fn=indexgenerator.show_project_map,
inputs=[project_name],
outputs=[m1],
)
def update_project_dropdown_list(url_params):
username = url_params.get("username", "default")
projects = dq.list_projects_by_author(author_id=username)
# to-do: filter projects based on user
return gr.Dropdown.update(choices=projects["name"].tolist())
# Get url params
url_params = gr.JSON({"username": "default"}, visible=False, label="URL Params")
# Gradio has a bug
# For dropdown to update by demo.load, dropdown value must be called downstream
b1 = gr.Button("Hidden button that fixes bug.", visible=False)
b1.click(lambda x: x, inputs=project_name, outputs=[])
# Update project dropdown list on page load
demo.load(
fn=update_project_dropdown_list,
inputs=[url_params],
outputs=[project_name],
_js=get_window_url_params,
queue=False,
)
demo.launch()