calculator / utils /indicators.py
mbuuck's picture
Change map to satellite view
354b508
raw
history blame
11.7 kB
import datetime
import json
import os
from itertools import repeat
import ee
import numpy as np
import pandas as pd
import plotly.graph_objects as go
import yaml
from utils import duckdb_queries as dq
from . import logging
GEE_SERVICE_ACCOUNT = (
"climatebase-july-2023@ee-geospatialml-aquarry.iam.gserviceaccount.com"
)
INDICES_FILE = "indices.yaml"
class IndexGenerator:
"""
A class to generate indices and compute zonal means.
Args:
indices (string[], required): Array of index names to include in aggregate index generation.
"""
def __init__(
self,
indices,
):
# Authenticate to GEE & DuckDB
self._authenticate_ee(GEE_SERVICE_ACCOUNT)
self.project_name = None
self.project_geometry = None
self.project_centroid = None
# Use defined subset of indices
all_indices = self._load_indices(INDICES_FILE)
self.indices = {k: all_indices[k] for k in indices}
def set_project(self, project_name):
self.project_name = project_name
self.project_geometry = dq.get_project_geometry(self.project_name)
self.project_centroid = dq.get_project_centroid(self.project_name)
# to-do: refactor to involve fewer transformations
_polygon = json.dumps(
json.loads(self.project_geometry[0][0])["features"][0]["geometry"]
)
# to-do: don't use self.roi and instead pass patameter strategically
self.roi = ee.Geometry.Polygon(json.loads(_polygon)["coordinates"])
def _cloudfree(self, gee_path, daterange):
"""
Internal method to generate a cloud-free composite.
Args:
gee_path (str): The path to the Google Earth Engine (GEE) image or image collection.
Returns:
ee.Image: The cloud-free composite clipped to the region of interest.
"""
# Load a raw Landsat ImageCollection for a single year.
collection = (
ee.ImageCollection(gee_path).filterDate(*daterange).filterBounds(self.roi)
)
# Create a cloud-free composite with custom parameters for cloud score threshold and percentile.
composite_cloudfree = ee.Algorithms.Landsat.simpleComposite(
**{"collection": collection, "percentile": 75, "cloudScoreRange": 5}
)
return composite_cloudfree.clip(self.roi)
@staticmethod
def _load_indices(indices_file):
# Read index configurations
with open(indices_file, "r") as stream:
try:
return yaml.safe_load(stream)
except yaml.YAMLError as e:
logging.error(e)
return None
def generate_index(self, index_config, year):
"""
Generates an index based on the provided index configuration.
Args:
index_config (dict): Configuration for generating the index.
Returns:
ee.Image: The generated index clipped to the region of interest.
"""
# Calculate date range, assume 1 year
start_date = str(datetime.date(year, 1, 1))
end_date = str(datetime.date(year, 12, 31))
daterange = [start_date, end_date]
# Calculate index based on type
logging.info(
f"Generating index: {index_config['name']} of type {index_config['gee_type']}"
)
match index_config["gee_type"]:
case "image":
dataset = ee.Image(index_config["gee_path"]).clip(self.roi)
if index_config.get("select"):
dataset = dataset.select(index_config["select"])
case "image_collection":
dataset = (
ee.ImageCollection(index_config["gee_path"])
.filterBounds(self.roi)
.map(lambda image: image.clip(self.roi))
.mean()
)
if index_config.get("select"):
dataset = dataset.select(index_config["select"])
case "feature_collection":
dataset = (
ee.Image()
.float()
.paint(
ee.FeatureCollection(index_config["gee_path"]),
index_config["select"],
)
.clip(self.roi)
)
case "algebraic":
image = self._cloudfree(index_config["gee_path"], daterange)
# to-do: params should come from index_config
dataset = image.normalizedDifference(["B4", "B3"])
case _:
dataset = None
if not dataset:
raise Exception("Failed to generate dataset.")
logging.info(f"Generated index: {index_config['name']}")
return dataset
def zonal_mean_index(self, index_key, year):
index_config = self.indices[index_key]
dataset = self.generate_index(index_config, year)
logging.info(f"Calculating zonal mean for {index_key}...")
out = dataset.reduceRegion(
**{
"reducer": ee.Reducer.mean(),
"geometry": self.roi,
"scale": 2000, # map scale
"bestEffort": True,
"maxPixels": 1e3,
}
).getInfo()
if index_config.get("bandname"):
return out[index_config.get("bandname")]
logging.info(f"Calculated zonal mean for {index_key}.")
return out
def generate_composite_index_df(self, year, indices=[]):
data = {
"metric": indices,
"year": year,
"centroid": "",
"project_name": "",
"value": list(map(self.zonal_mean_index, indices, repeat(year))),
# to-do: calculate with duckdb; also, should be part of project table instead
"area": self.roi.area().getInfo(), # m^2
"geojson": "",
# to-do: coefficient
}
logging.info("data", data)
df = pd.DataFrame(data)
return df
@staticmethod
def _authenticate_ee(ee_service_account):
"""
Huggingface Spaces does not support secret files, therefore authenticate with an environment variable containing the JSON.
"""
logging.info("Authenticating to Google Earth Engine...")
credentials = ee.ServiceAccountCredentials(
ee_service_account, key_data=os.environ["ee_service_account"]
)
ee.Initialize(credentials)
logging.info("Authenticated to Google Earth Engine.")
def _calculate_yearly_index(self, years):
dfs = []
logging.info(years)
# to-do: pararelize?
for year in years:
logging.info(year)
df = self.generate_composite_index_df(
year, self.project_geometry, list(self.indices.keys())
)
dfs.append(df)
# Concatenate all dataframes
df_concat = pd.concat(dfs)
df_concat["centroid"] = str(self.project_centroid)
df_concat["project_name"] = self.project_name
df_concat["geojson"] = str(self.project_geometry)
return df_concat.round(2)
# h/t: https://community.plotly.com/t/dynamic-zoom-for-mapbox/32658/12\
@staticmethod
def _latlon_to_config(longitudes=None, latitudes=None):
"""Function documentation:\n
Basic framework adopted from Krichardson under the following thread:
https://community.plotly.com/t/dynamic-zoom-for-mapbox/32658/7
# NOTE:
# THIS IS A TEMPORARY SOLUTION UNTIL THE DASH TEAM IMPLEMENTS DYNAMIC ZOOM
# in their plotly-functions associated with mapbox, such as go.Densitymapbox() etc.
Returns the appropriate zoom-level for these plotly-mapbox-graphics along with
the center coordinate tuple of all provided coordinate tuples.
"""
# Check whether both latitudes and longitudes have been passed,
# or if the list lenghts don't match
if (latitudes is None or longitudes is None) or (
len(latitudes) != len(longitudes)
):
# Otherwise, return the default values of 0 zoom and the coordinate origin as center point
return 0, (0, 0)
# Get the boundary-box
b_box = {}
b_box["height"] = latitudes.max() - latitudes.min()
b_box["width"] = longitudes.max() - longitudes.min()
b_box["center"] = (np.mean(longitudes), np.mean(latitudes))
# get the area of the bounding box in order to calculate a zoom-level
area = b_box["height"] * b_box["width"]
# * 1D-linear interpolation with numpy:
# - Pass the area as the only x-value and not as a list, in order to return a scalar as well
# - The x-points "xp" should be in parts in comparable order of magnitude of the given area
# - The zpom-levels are adapted to the areas, i.e. start with the smallest area possible of 0
# which leads to the highest possible zoom value 20, and so forth decreasing with increasing areas
# as these variables are antiproportional
zoom = np.interp(
x=area,
xp=[0, 5**-10, 4**-10, 3**-10, 2**-10, 1**-10, 1**-5],
fp=[20, 15, 14, 13, 12, 7, 5],
)
# Finally, return the zoom level and the associated boundary-box center coordinates
return zoom, b_box["center"]
def show_project_map(self):
features = json.loads(self.project_geometry[0][0].replace("'", '"'))["features"]
geometry = features[0]["geometry"]
longitudes = np.array(geometry["coordinates"])[0, :, 0]
latitudes = np.array(geometry["coordinates"])[0, :, 1]
zoom, bbox_center = self._latlon_to_config(longitudes, latitudes)
fig = go.Figure(
go.Scattermapbox(
mode="markers",
lon=[bbox_center[0]],
lat=[bbox_center[1]],
marker={"size": 20, "color": ["cyan"]},
)
)
fig.update_layout(
mapbox={
"style": "satellite",
"accesstoken":os.environ['NEXT_PUBLIC_MAPBOX_API'],
"center": {"lon": bbox_center[0], "lat": bbox_center[1]},
"zoom": zoom,
"layers": [
{
"source": {
"type": "FeatureCollection",
"features": [{"type": "Feature", "geometry": geometry}],
},
"type": "fill",
"below": "traces",
"color": "royalblue",
"opacity": 0.5,
}
],
},
margin={"l": 0, "r": 0, "b": 0, "t": 0},
)
return fig
def calculate_score(self, start_year, end_year):
years = []
for year in range(start_year, end_year):
row_exists = dq.check_if_project_exists_for_year(self.project_name, year)
if not row_exists:
years.append(year)
if len(years) > 0:
df = self._calculate_yearly_index(years)
# Write score table to `_temptable`
dq.write_score_to_temptable(df)
# Create `bioindicator` table IF NOT EXISTS.
dq.get_or_create_bioindicator_table()
# UPSERT project record
dq.upsert_project_record()
logging.info("upserted records into motherduck")
scores = dq.get_project_scores(self.project_name, start_year, end_year)
return scores