Spaces:
Build error
Build error
Got map to load
Browse files
app.py
CHANGED
@@ -1,17 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
import plotly.graph_objects as go
|
3 |
-
# import ee
|
4 |
-
# # import geemap
|
5 |
-
|
6 |
-
# # GEE
|
7 |
-
# service_account = 'climatebase-july-2023@ee-geospatialml-aquarry.iam.gserviceaccount.com'
|
8 |
-
# credentials = ee.ServiceAccountCredentials(service_account, 'service_account.json')
|
9 |
-
# ee.Initialize(credentials)
|
10 |
-
|
11 |
-
# # Gradio dataset
|
12 |
-
# dataset = load_dataset("gradio/NYC-Airbnb-Open-Data", split="train")
|
13 |
-
# df = dataset.to_pandas()
|
14 |
-
|
15 |
import os
|
16 |
import duckdb
|
17 |
import pandas as pd
|
@@ -19,6 +7,9 @@ import datetime
|
|
19 |
import ee
|
20 |
# import geemap
|
21 |
import yaml
|
|
|
|
|
|
|
22 |
|
23 |
# Define constants
|
24 |
MD_SERVICE_TOKEN = 'md_service_token.txt'
|
@@ -162,8 +153,8 @@ class IndexGenerator:
|
|
162 |
"centroid": str(self.centroid),
|
163 |
"project_name": self.project_name,
|
164 |
"value": list(map(self.zonal_mean_index, indices)),
|
165 |
-
"area": roi.area().getInfo(), # m^2
|
166 |
-
"geojson": str(roi.getInfo()),
|
167 |
}
|
168 |
|
169 |
print('data', data)
|
@@ -214,47 +205,48 @@ def create_dataframe(years, project_name):
|
|
214 |
dfs.append(df)
|
215 |
return pd.concat(dfs)
|
216 |
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
# 'cloudScoreRange': 5
|
231 |
-
# })
|
232 |
-
|
233 |
-
# Map.addLayer(composite_cloudfree, {'bands': ['B4', 'B3', 'B2'], 'max': 128}, 'Custom TOA composite')
|
234 |
-
# Map.centerObject(roi, 14)
|
235 |
-
|
236 |
-
|
237 |
-
# ig = IndexGenerator(centroid=LOCATION, year=2015, indices_file=INDICES_FILE, project_name='Test Project', map=Map)
|
238 |
-
# dataset = ig.generate_index(indices['Air'])
|
239 |
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
|
247 |
-
# minMax.getInfo()
|
248 |
def calculate_biodiversity_score(start_year, end_year, project_name):
|
249 |
years = []
|
250 |
for year in range(start_year, end_year):
|
251 |
-
row_exists =
|
|
|
|
|
252 |
if not row_exists:
|
253 |
years.append(year)
|
254 |
|
255 |
if len(years)>0:
|
256 |
df = create_dataframe(years, project_name)
|
257 |
-
# con.sql('FROM df LIMIT 5').show()
|
258 |
|
259 |
# Write score table to `_temptable`
|
260 |
con.sql('CREATE OR REPLACE TABLE _temptable AS SELECT *, (value * area) AS score FROM (SELECT year, project_name, AVG(value) AS value, area FROM df GROUP BY year, project_name, area ORDER BY project_name)')
|
@@ -265,12 +257,14 @@ def calculate_biodiversity_score(start_year, end_year, project_name):
|
|
265 |
USE climatebase;
|
266 |
CREATE TABLE IF NOT EXISTS bioindicator (year BIGINT, project_name VARCHAR(255), value DOUBLE, area DOUBLE, score DOUBLE, CONSTRAINT unique_year_project_name UNIQUE (year, project_name));
|
267 |
""")
|
268 |
-
|
269 |
-
|
|
|
|
|
270 |
|
271 |
def view_all():
|
272 |
print('view_all')
|
273 |
-
return con.sql(
|
274 |
|
275 |
def push_to_md():
|
276 |
# UPSERT project record
|
@@ -280,68 +274,16 @@ def push_to_md():
|
|
280 |
""")
|
281 |
print('Saved records')
|
282 |
|
283 |
-
# preview_table()
|
284 |
-
|
285 |
-
def filter_map(min_price, max_price, boroughs):
|
286 |
-
|
287 |
-
filtered_df = df[(df['neighbourhood_group'].isin(boroughs)) &
|
288 |
-
(df['price'] > min_price) & (df['price'] < max_price)]
|
289 |
-
names = filtered_df["name"].tolist()
|
290 |
-
prices = filtered_df["price"].tolist()
|
291 |
-
text_list = [(names[i], prices[i]) for i in range(0, len(names))]
|
292 |
-
fig = go.Figure(go.Scattermapbox(
|
293 |
-
customdata=text_list,
|
294 |
-
lat=filtered_df['latitude'].tolist(),
|
295 |
-
lon=filtered_df['longitude'].tolist(),
|
296 |
-
mode='markers',
|
297 |
-
marker=go.scattermapbox.Marker(
|
298 |
-
size=6
|
299 |
-
),
|
300 |
-
hoverinfo="text",
|
301 |
-
hovertemplate='<b>Name</b>: %{customdata[0]}<br><b>Price</b>: $%{customdata[1]}'
|
302 |
-
))
|
303 |
-
|
304 |
-
fig.update_layout(
|
305 |
-
mapbox_style="open-street-map",
|
306 |
-
hovermode='closest',
|
307 |
-
mapbox=dict(
|
308 |
-
bearing=0,
|
309 |
-
center=go.layout.mapbox.Center(
|
310 |
-
lat=40.67,
|
311 |
-
lon=-73.90
|
312 |
-
),
|
313 |
-
pitch=0,
|
314 |
-
zoom=9
|
315 |
-
),
|
316 |
-
)
|
317 |
-
|
318 |
-
return fig
|
319 |
-
|
320 |
with gr.Blocks() as demo:
|
321 |
con = set_up_duckdb(MD_SERVICE_TOKEN)
|
322 |
authenticate_gee(GEE_SERVICE_ACCOUNT, GEE_SERVICE_ACCOUNT_CREDENTIALS_FILE)
|
323 |
-
# Create circle buffer over point
|
324 |
-
# roi = ee.Geometry.Point(*LOCATION).buffer(ROI_RADIUS)
|
325 |
-
|
326 |
-
# # Load a raw Landsat ImageCollection for a single year.
|
327 |
-
# start_date = str(datetime.date(YEAR, 1, 1))
|
328 |
-
# end_date = str(datetime.date(YEAR, 12, 31))
|
329 |
-
# collection = (
|
330 |
-
# ee.ImageCollection('LANDSAT/LC08/C02/T1')
|
331 |
-
# .filterDate(start_date, end_date)
|
332 |
-
# .filterBounds(roi)
|
333 |
-
# )
|
334 |
-
|
335 |
-
# indices = load_indices(INDICES_FILE)
|
336 |
-
# push_to_md(START_YEAR, END_YEAR, 'Test Project')
|
337 |
with gr.Column():
|
338 |
-
|
339 |
with gr.Row():
|
340 |
start_year = gr.Number(value=2017, label="Start Year", precision=0)
|
341 |
end_year = gr.Number(value=2022, label="End Year", precision=0)
|
342 |
project_name = gr.Textbox(label='Project Name')
|
343 |
-
|
344 |
-
# btn = gr.Button(value="Update Filter")
|
345 |
with gr.Row():
|
346 |
calc_btn = gr.Button(value="Calculate!")
|
347 |
view_btn = gr.Button(value="View all")
|
@@ -351,10 +293,9 @@ with gr.Blocks() as demo:
|
|
351 |
datatype=["number", "str", "number"],
|
352 |
label="Biodiversity scores by year",
|
353 |
)
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
view_btn.click(view_all, outputs=results_df)
|
358 |
save_btn.click(push_to_md)
|
359 |
|
360 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import plotly.graph_objects as go
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import os
|
4 |
import duckdb
|
5 |
import pandas as pd
|
|
|
7 |
import ee
|
8 |
# import geemap
|
9 |
import yaml
|
10 |
+
import numpy as np
|
11 |
+
import json
|
12 |
+
import geojson
|
13 |
|
14 |
# Define constants
|
15 |
MD_SERVICE_TOKEN = 'md_service_token.txt'
|
|
|
153 |
"centroid": str(self.centroid),
|
154 |
"project_name": self.project_name,
|
155 |
"value": list(map(self.zonal_mean_index, indices)),
|
156 |
+
"area": self.roi.area().getInfo(), # m^2
|
157 |
+
"geojson": str(self.roi.getInfo()),
|
158 |
}
|
159 |
|
160 |
print('data', data)
|
|
|
205 |
dfs.append(df)
|
206 |
return pd.concat(dfs)
|
207 |
|
208 |
+
def filter_map():
|
209 |
+
prepared_statement = \
|
210 |
+
con.execute("SELECT geometry FROM project WHERE name = ? LIMIT 1",
|
211 |
+
["My project name"]).fetchall()
|
212 |
+
features = \
|
213 |
+
json.loads(prepared_statement[0][0].replace("\'", "\""))['features']
|
214 |
+
geometry = features[0]['geometry']
|
215 |
+
x_centroid = np.mean(np.array(geometry["coordinates"])[0, :, 0])
|
216 |
+
y_centroid = np.mean(np.array(geometry["coordinates"])[0, :, 1])
|
217 |
+
fig = go.Figure(go.Scattermapbox(
|
218 |
+
mode = "markers",
|
219 |
+
lon = [x_centroid], lat = [y_centroid],
|
220 |
+
marker = {'size': 20, 'color': ["cyan"]}))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
|
222 |
+
fig.update_layout(
|
223 |
+
mapbox = {
|
224 |
+
'style': "stamen-terrain",
|
225 |
+
'center': { 'lon': x_centroid, 'lat': y_centroid},
|
226 |
+
'zoom': 12, 'layers': [{
|
227 |
+
'source': {
|
228 |
+
'type': "FeatureCollection",
|
229 |
+
'features': [{
|
230 |
+
'type': "Feature",
|
231 |
+
'geometry': geometry
|
232 |
+
}]
|
233 |
+
},
|
234 |
+
'type': "fill", 'below': "traces", 'color': "royalblue"}]},
|
235 |
+
margin = {'l':0, 'r':0, 'b':0, 't':0})
|
236 |
+
|
237 |
+
return fig
|
238 |
|
|
|
239 |
def calculate_biodiversity_score(start_year, end_year, project_name):
|
240 |
years = []
|
241 |
for year in range(start_year, end_year):
|
242 |
+
row_exists = \
|
243 |
+
con.execute("SELECT COUNT(1) FROM bioindicator WHERE (year = ? AND project_name = '?')",
|
244 |
+
[year, project_name]).fetchall()[0][0]
|
245 |
if not row_exists:
|
246 |
years.append(year)
|
247 |
|
248 |
if len(years)>0:
|
249 |
df = create_dataframe(years, project_name)
|
|
|
250 |
|
251 |
# Write score table to `_temptable`
|
252 |
con.sql('CREATE OR REPLACE TABLE _temptable AS SELECT *, (value * area) AS score FROM (SELECT year, project_name, AVG(value) AS value, area FROM df GROUP BY year, project_name, area ORDER BY project_name)')
|
|
|
257 |
USE climatebase;
|
258 |
CREATE TABLE IF NOT EXISTS bioindicator (year BIGINT, project_name VARCHAR(255), value DOUBLE, area DOUBLE, score DOUBLE, CONSTRAINT unique_year_project_name UNIQUE (year, project_name));
|
259 |
""")
|
260 |
+
scores = \
|
261 |
+
con.execute("SELECT * FROM bioindicator WHERE (year > ? AND year <= ? AND project_name = '?')",
|
262 |
+
[start_year, end_year, project_name]).fetchall().df()
|
263 |
+
return scores
|
264 |
|
265 |
def view_all():
|
266 |
print('view_all')
|
267 |
+
return con.sql("SELECT * FROM bioindicator").df()
|
268 |
|
269 |
def push_to_md():
|
270 |
# UPSERT project record
|
|
|
274 |
""")
|
275 |
print('Saved records')
|
276 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
with gr.Blocks() as demo:
|
278 |
con = set_up_duckdb(MD_SERVICE_TOKEN)
|
279 |
authenticate_gee(GEE_SERVICE_ACCOUNT, GEE_SERVICE_ACCOUNT_CREDENTIALS_FILE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
280 |
with gr.Column():
|
281 |
+
m1 = gr.Plot()
|
282 |
with gr.Row():
|
283 |
start_year = gr.Number(value=2017, label="Start Year", precision=0)
|
284 |
end_year = gr.Number(value=2022, label="End Year", precision=0)
|
285 |
project_name = gr.Textbox(label='Project Name')
|
286 |
+
|
|
|
287 |
with gr.Row():
|
288 |
calc_btn = gr.Button(value="Calculate!")
|
289 |
view_btn = gr.Button(value="View all")
|
|
|
293 |
datatype=["number", "str", "number"],
|
294 |
label="Biodiversity scores by year",
|
295 |
)
|
296 |
+
demo.load(filter_map, outputs=[m1])
|
297 |
+
calc_btn.click(calculate_biodiversity_score, inputs=[start_year, end_year, project_name], outputs=[results_df])
|
298 |
+
view_btn.click(view_all, outputs=[results_df])
|
|
|
299 |
save_btn.click(push_to_md)
|
300 |
|
301 |
demo.launch()
|