import datetime
import os
import duckdb
import ee
import gradio as gr
import pandas as pd
import plotly.graph_objects as go
import yaml
# Define constants
MD_SERVICE_TOKEN = "md_service_token.txt"
DATE = "2020-01-01"
YEAR = 2020
LOCATION = [-74.653370, 5.845328]
ROI_RADIUS = 20000
GEE_SERVICE_ACCOUNT = (
"climatebase-july-2023@ee-geospatialml-aquarry.iam.gserviceaccount.com"
)
GEE_SERVICE_ACCOUNT_CREDENTIALS_FILE = "ee_service_account.json"
INDICES_FILE = "indices.yaml"
START_YEAR = 2015
END_YEAR = 2022
class IndexGenerator:
"""
A class to generate indices and compute zonal means.
Args:
centroid (tuple): The centroid coordinates (latitude, longitude) of the region of interest.
year (int): The year for which indices are generated.
roi_radius (int, optional): The radius (in meters) for creating a buffer around the centroid as the region of interest. Defaults to 20000.
project_name (str, optional): The name of the project. Defaults to "".
map (geemap.Map, optional): Map object for mapping. Defaults to None (i.e. no map created)
"""
def __init__(
self,
centroid,
roi_radius,
year,
indices_file,
project_name="",
map=None,
):
self.indices = self._load_indices(indices_file)
self.centroid = centroid
self.roi = ee.Geometry.Point(*centroid).buffer(roi_radius)
self.year = year
self.start_date = str(datetime.date(self.year, 1, 1))
self.end_date = str(datetime.date(self.year, 12, 31))
self.daterange = [self.start_date, self.end_date]
self.project_name = project_name
self.map = map
if self.map is not None:
self.show = True
else:
self.show = False
def _cloudfree(self, gee_path):
"""
Internal method to generate a cloud-free composite.
Args:
gee_path (str): The path to the Google Earth Engine (GEE) image or image collection.
Returns:
ee.Image: The cloud-free composite clipped to the region of interest.
"""
# Load a raw Landsat ImageCollection for a single year.
collection = (
ee.ImageCollection(gee_path)
.filterDate(*self.daterange)
.filterBounds(self.roi)
)
# Create a cloud-free composite with custom parameters for cloud score threshold and percentile.
composite_cloudfree = ee.Algorithms.Landsat.simpleComposite(
**{"collection": collection, "percentile": 75, "cloudScoreRange": 5}
)
return composite_cloudfree.clip(self.roi)
def _load_indices(self, indices_file):
# Read index configurations
with open(indices_file, "r") as stream:
try:
return yaml.safe_load(stream)
except yaml.YAMLError as e:
print(e)
return None
def show_map(self, map=None):
if map is not None:
self.map = map
self.show = True
def disable_map(self):
self.show = False
def generate_index(self, index_config):
"""
Generates an index based on the provided index configuration.
Args:
index_config (dict): Configuration for generating the index.
Returns:
ee.Image: The generated index clipped to the region of interest.
"""
match index_config["gee_type"]:
case "image":
dataset = ee.Image(index_config["gee_path"]).clip(self.roi)
if index_config.get("select"):
dataset = dataset.select(index_config["select"])
case "image_collection":
dataset = (
ee.ImageCollection(index_config["gee_path"])
.filterBounds(self.roi)
.map(lambda image: image.clip(self.roi))
.mean()
)
if index_config.get("select"):
dataset = dataset.select(index_config["select"])
case "feature_collection":
dataset = (
ee.Image()
.float()
.paint(
ee.FeatureCollection(index_config["gee_path"]),
index_config["select"],
)
.clip(self.roi)
)
case "algebraic":
image = self._cloudfree(index_config["gee_path"])
dataset = image.normalizedDifference(["B4", "B3"])
case _:
dataset = None
if not dataset:
raise Exception("Failed to generate dataset.")
if self.show and index_config.get("show"):
map.addLayer(dataset, index_config["viz"], index_config["name"])
print(f"Generated index: {index_config['name']}")
return dataset
def zonal_mean_index(self, index_key):
index_config = self.indices[index_key]
dataset = self.generate_index(index_config)
# zm = self._zonal_mean(single, index_config.get('bandname') or 'constant')
out = dataset.reduceRegion(
**{
"reducer": ee.Reducer.mean(),
"geometry": self.roi,
"scale": 200, # map scale
}
).getInfo()
if index_config.get("bandname"):
return out[index_config.get("bandname")]
return out
def generate_composite_index_df(self, indices=[]):
data = {
"metric": indices,
"year": self.year,
"centroid": str(self.centroid),
"project_name": self.project_name,
"value": list(map(self.zonal_mean_index, indices)),
"area": roi.area().getInfo(), # m^2
"geojson": str(roi.getInfo()),
}
print("data", data)
df = pd.DataFrame(data)
return df
def set_up_duckdb():
print("set up duckdb")
# use `climatebase` db
if not os.getenv("motherduck_token"):
raise Exception(
"No motherduck token found. Please set the `motherduck_token` environment variable."
)
else:
con = duckdb.connect("md:climatebase")
con.sql("USE climatebase;")
# load extensions
con.sql("""INSTALL spatial; LOAD spatial;""")
return con
def authenticate_gee(gee_service_account, gee_service_account_credentials_file):
print("authenticate_gee")
# to-do: alert if dataset filter date nan
credentials = ee.ServiceAccountCredentials(
gee_service_account, gee_service_account_credentials_file
)
ee.Initialize(credentials)
def load_indices(indices_file):
# Read index configurations
with open(indices_file, "r") as stream:
try:
return yaml.safe_load(stream)
except yaml.YAMLError as e:
print(e)
return None
def create_dataframe(years, project_name):
dfs = []
print(years)
indices = load_indices(INDICES_FILE)
for year in years:
print(year)
ig = IndexGenerator(
centroid=LOCATION,
roi_radius=ROI_RADIUS,
year=year,
indices_file=INDICES_FILE,
project_name=project_name,
)
df = ig.generate_composite_index_df(list(indices.keys()))
dfs.append(df)
return pd.concat(dfs)
# def preview_table():
# con.sql("FROM bioindicator;").show()
# if __name__ == '__main__':
# Map = geemap.Map()
# # Create a cloud-free composite with custom parameters for cloud score threshold and percentile.
# composite_cloudfree = ee.Algorithms.Landsat.simpleComposite(**{
# 'collection': collection,
# 'percentile': 75,
# 'cloudScoreRange': 5
# })
# Map.addLayer(composite_cloudfree, {'bands': ['B4', 'B3', 'B2'], 'max': 128}, 'Custom TOA composite')
# Map.centerObject(roi, 14)
# ig = IndexGenerator(centroid=LOCATION, year=2015, indices_file=INDICES_FILE, project_name='Test Project', map=Map)
# dataset = ig.generate_index(indices['Air'])
# minMax = dataset.clip(roi).reduceRegion(
# geometry = roi,
# reducer = ee.Reducer.minMax(),
# scale= 3000,
# maxPixels= 10e3,
# )
# minMax.getInfo()
def calculate_biodiversity_score(start_year, end_year, project_name):
years = []
for year in range(start_year, end_year):
row_exists = con.sql(
f"SELECT COUNT(1) FROM bioindicator WHERE (year = {year} AND project_name = '{project_name}')"
).fetchall()[0][0]
if not row_exists:
years.append(year)
if len(years) > 0:
df = create_dataframe(years, project_name)
# con.sql('FROM df LIMIT 5').show()
# Write score table to `_temptable`
con.sql(
"CREATE OR REPLACE TABLE _temptable AS SELECT *, (value * area) AS score FROM (SELECT year, project_name, AVG(value) AS value, area FROM df GROUP BY year, project_name, area ORDER BY project_name)"
)
# Create `bioindicator` table IF NOT EXISTS.
con.sql(
"""
USE climatebase;
CREATE TABLE IF NOT EXISTS bioindicator (year BIGINT, project_name VARCHAR(255), value DOUBLE, area DOUBLE, score DOUBLE, CONSTRAINT unique_year_project_name UNIQUE (year, project_name));
"""
)
return con.sql(
f"SELECT * FROM bioindicator WHERE (year > {start_year} AND year <= {end_year} AND project_name = '{project_name}')"
).df()
def view_all():
print("view_all")
return con.sql(f"SELECT * FROM bioindicator").df()
def push_to_md():
# UPSERT project record
con.sql(
"""
INSERT INTO bioindicator FROM _temptable
ON CONFLICT (year, project_name) DO UPDATE SET value = excluded.value;
"""
)
print("Saved records")
# preview_table()
def filter_map(min_price, max_price, boroughs):
filtered_df = df[
(df["neighbourhood_group"].isin(boroughs))
& (df["price"] > min_price)
& (df["price"] < max_price)
]
names = filtered_df["name"].tolist()
prices = filtered_df["price"].tolist()
text_list = [(names[i], prices[i]) for i in range(0, len(names))]
fig = go.Figure(
go.Scattermapbox(
customdata=text_list,
lat=filtered_df["latitude"].tolist(),
lon=filtered_df["longitude"].tolist(),
mode="markers",
marker=go.scattermapbox.Marker(size=6),
hoverinfo="text",
hovertemplate="Name: %{customdata[0]}
Price: $%{customdata[1]}",
)
)
fig.update_layout(
mapbox_style="open-street-map",
hovermode="closest",
mapbox=dict(
bearing=0,
center=go.layout.mapbox.Center(lat=40.67, lon=-73.90),
pitch=0,
zoom=9,
),
)
return fig
with gr.Blocks() as demo:
con = set_up_duckdb()
authenticate_gee(GEE_SERVICE_ACCOUNT, GEE_SERVICE_ACCOUNT_CREDENTIALS_FILE)
# Create circle buffer over point
# roi = ee.Geometry.Point(*LOCATION).buffer(ROI_RADIUS)
# # Load a raw Landsat ImageCollection for a single year.
# start_date = str(datetime.date(YEAR, 1, 1))
# end_date = str(datetime.date(YEAR, 12, 31))
# collection = (
# ee.ImageCollection('LANDSAT/LC08/C02/T1')
# .filterDate(start_date, end_date)
# .filterBounds(roi)
# )
# indices = load_indices(INDICES_FILE)
# push_to_md(START_YEAR, END_YEAR, 'Test Project')
with gr.Column():
# map = gr.Plot().style()
with gr.Row():
start_year = gr.Number(value=2017, label="Start Year", precision=0)
end_year = gr.Number(value=2022, label="End Year", precision=0)
project_name = gr.Textbox(label="Project Name")
# boroughs = gr.CheckboxGroup(choices=["Queens", "Brooklyn", "Manhattan", "Bronx", "Staten Island"], value=["Queens", "Brooklyn"], label="Select Methodology:")
# btn = gr.Button(value="Update Filter")
with gr.Row():
calc_btn = gr.Button(value="Calculate!")
view_btn = gr.Button(value="View all")
save_btn = gr.Button(value="Save")
results_df = gr.Dataframe(
headers=["Year", "Project Name", "Score"],
datatype=["number", "str", "number"],
label="Biodiversity scores by year",
)
# demo.load(filter_map, [min_price, max_price, boroughs], map)
# btn.click(filter_map, [min_price, max_price, boroughs], map)
calc_btn.click(
calculate_biodiversity_score,
inputs=[start_year, end_year, project_name],
outputs=results_df,
)
view_btn.click(view_all, outputs=results_df)
save_btn.click(push_to_md)
demo.launch()