import datetime import os import duckdb import ee import gradio as gr import pandas as pd import plotly.graph_objects as go import yaml # Define constants MD_SERVICE_TOKEN = "md_service_token.txt" DATE = "2020-01-01" YEAR = 2020 LOCATION = [-74.653370, 5.845328] ROI_RADIUS = 20000 GEE_SERVICE_ACCOUNT = ( "climatebase-july-2023@ee-geospatialml-aquarry.iam.gserviceaccount.com" ) GEE_SERVICE_ACCOUNT_CREDENTIALS_FILE = "ee_service_account.json" INDICES_FILE = "indices.yaml" START_YEAR = 2015 END_YEAR = 2022 class IndexGenerator: """ A class to generate indices and compute zonal means. Args: centroid (tuple): The centroid coordinates (latitude, longitude) of the region of interest. year (int): The year for which indices are generated. roi_radius (int, optional): The radius (in meters) for creating a buffer around the centroid as the region of interest. Defaults to 20000. project_name (str, optional): The name of the project. Defaults to "". map (geemap.Map, optional): Map object for mapping. Defaults to None (i.e. no map created) """ def __init__( self, centroid, roi_radius, year, indices_file, project_name="", map=None, ): self.indices = self._load_indices(indices_file) self.centroid = centroid self.roi = ee.Geometry.Point(*centroid).buffer(roi_radius) self.year = year self.start_date = str(datetime.date(self.year, 1, 1)) self.end_date = str(datetime.date(self.year, 12, 31)) self.daterange = [self.start_date, self.end_date] self.project_name = project_name self.map = map if self.map is not None: self.show = True else: self.show = False def _cloudfree(self, gee_path): """ Internal method to generate a cloud-free composite. Args: gee_path (str): The path to the Google Earth Engine (GEE) image or image collection. Returns: ee.Image: The cloud-free composite clipped to the region of interest. """ # Load a raw Landsat ImageCollection for a single year. collection = ( ee.ImageCollection(gee_path) .filterDate(*self.daterange) .filterBounds(self.roi) ) # Create a cloud-free composite with custom parameters for cloud score threshold and percentile. composite_cloudfree = ee.Algorithms.Landsat.simpleComposite( **{"collection": collection, "percentile": 75, "cloudScoreRange": 5} ) return composite_cloudfree.clip(self.roi) def _load_indices(self, indices_file): # Read index configurations with open(indices_file, "r") as stream: try: return yaml.safe_load(stream) except yaml.YAMLError as e: print(e) return None def show_map(self, map=None): if map is not None: self.map = map self.show = True def disable_map(self): self.show = False def generate_index(self, index_config): """ Generates an index based on the provided index configuration. Args: index_config (dict): Configuration for generating the index. Returns: ee.Image: The generated index clipped to the region of interest. """ match index_config["gee_type"]: case "image": dataset = ee.Image(index_config["gee_path"]).clip(self.roi) if index_config.get("select"): dataset = dataset.select(index_config["select"]) case "image_collection": dataset = ( ee.ImageCollection(index_config["gee_path"]) .filterBounds(self.roi) .map(lambda image: image.clip(self.roi)) .mean() ) if index_config.get("select"): dataset = dataset.select(index_config["select"]) case "feature_collection": dataset = ( ee.Image() .float() .paint( ee.FeatureCollection(index_config["gee_path"]), index_config["select"], ) .clip(self.roi) ) case "algebraic": image = self._cloudfree(index_config["gee_path"]) dataset = image.normalizedDifference(["B4", "B3"]) case _: dataset = None if not dataset: raise Exception("Failed to generate dataset.") if self.show and index_config.get("show"): map.addLayer(dataset, index_config["viz"], index_config["name"]) print(f"Generated index: {index_config['name']}") return dataset def zonal_mean_index(self, index_key): index_config = self.indices[index_key] dataset = self.generate_index(index_config) # zm = self._zonal_mean(single, index_config.get('bandname') or 'constant') out = dataset.reduceRegion( **{ "reducer": ee.Reducer.mean(), "geometry": self.roi, "scale": 200, # map scale } ).getInfo() if index_config.get("bandname"): return out[index_config.get("bandname")] return out def generate_composite_index_df(self, indices=[]): data = { "metric": indices, "year": self.year, "centroid": str(self.centroid), "project_name": self.project_name, "value": list(map(self.zonal_mean_index, indices)), "area": roi.area().getInfo(), # m^2 "geojson": str(roi.getInfo()), } print("data", data) df = pd.DataFrame(data) return df def set_up_duckdb(): print("set up duckdb") # use `climatebase` db if not os.getenv("motherduck_token"): raise Exception( "No motherduck token found. Please set the `motherduck_token` environment variable." ) else: con = duckdb.connect("md:climatebase") con.sql("USE climatebase;") # load extensions con.sql("""INSTALL spatial; LOAD spatial;""") return con def authenticate_gee(gee_service_account, gee_service_account_credentials_file): print("authenticate_gee") # to-do: alert if dataset filter date nan credentials = ee.ServiceAccountCredentials( gee_service_account, gee_service_account_credentials_file ) ee.Initialize(credentials) def load_indices(indices_file): # Read index configurations with open(indices_file, "r") as stream: try: return yaml.safe_load(stream) except yaml.YAMLError as e: print(e) return None def create_dataframe(years, project_name): dfs = [] print(years) indices = load_indices(INDICES_FILE) for year in years: print(year) ig = IndexGenerator( centroid=LOCATION, roi_radius=ROI_RADIUS, year=year, indices_file=INDICES_FILE, project_name=project_name, ) df = ig.generate_composite_index_df(list(indices.keys())) dfs.append(df) return pd.concat(dfs) # def preview_table(): # con.sql("FROM bioindicator;").show() # if __name__ == '__main__': # Map = geemap.Map() # # Create a cloud-free composite with custom parameters for cloud score threshold and percentile. # composite_cloudfree = ee.Algorithms.Landsat.simpleComposite(**{ # 'collection': collection, # 'percentile': 75, # 'cloudScoreRange': 5 # }) # Map.addLayer(composite_cloudfree, {'bands': ['B4', 'B3', 'B2'], 'max': 128}, 'Custom TOA composite') # Map.centerObject(roi, 14) # ig = IndexGenerator(centroid=LOCATION, year=2015, indices_file=INDICES_FILE, project_name='Test Project', map=Map) # dataset = ig.generate_index(indices['Air']) # minMax = dataset.clip(roi).reduceRegion( # geometry = roi, # reducer = ee.Reducer.minMax(), # scale= 3000, # maxPixels= 10e3, # ) # minMax.getInfo() def calculate_biodiversity_score(start_year, end_year, project_name): years = [] for year in range(start_year, end_year): row_exists = con.sql( f"SELECT COUNT(1) FROM bioindicator WHERE (year = {year} AND project_name = '{project_name}')" ).fetchall()[0][0] if not row_exists: years.append(year) if len(years) > 0: df = create_dataframe(years, project_name) # con.sql('FROM df LIMIT 5').show() # Write score table to `_temptable` con.sql( "CREATE OR REPLACE TABLE _temptable AS SELECT *, (value * area) AS score FROM (SELECT year, project_name, AVG(value) AS value, area FROM df GROUP BY year, project_name, area ORDER BY project_name)" ) # Create `bioindicator` table IF NOT EXISTS. con.sql( """ USE climatebase; CREATE TABLE IF NOT EXISTS bioindicator (year BIGINT, project_name VARCHAR(255), value DOUBLE, area DOUBLE, score DOUBLE, CONSTRAINT unique_year_project_name UNIQUE (year, project_name)); """ ) return con.sql( f"SELECT * FROM bioindicator WHERE (year > {start_year} AND year <= {end_year} AND project_name = '{project_name}')" ).df() def view_all(): print("view_all") return con.sql(f"SELECT * FROM bioindicator").df() def push_to_md(): # UPSERT project record con.sql( """ INSERT INTO bioindicator FROM _temptable ON CONFLICT (year, project_name) DO UPDATE SET value = excluded.value; """ ) print("Saved records") # preview_table() def filter_map(min_price, max_price, boroughs): filtered_df = df[ (df["neighbourhood_group"].isin(boroughs)) & (df["price"] > min_price) & (df["price"] < max_price) ] names = filtered_df["name"].tolist() prices = filtered_df["price"].tolist() text_list = [(names[i], prices[i]) for i in range(0, len(names))] fig = go.Figure( go.Scattermapbox( customdata=text_list, lat=filtered_df["latitude"].tolist(), lon=filtered_df["longitude"].tolist(), mode="markers", marker=go.scattermapbox.Marker(size=6), hoverinfo="text", hovertemplate="Name: %{customdata[0]}
Price: $%{customdata[1]}", ) ) fig.update_layout( mapbox_style="open-street-map", hovermode="closest", mapbox=dict( bearing=0, center=go.layout.mapbox.Center(lat=40.67, lon=-73.90), pitch=0, zoom=9, ), ) return fig with gr.Blocks() as demo: con = set_up_duckdb() authenticate_gee(GEE_SERVICE_ACCOUNT, GEE_SERVICE_ACCOUNT_CREDENTIALS_FILE) # Create circle buffer over point # roi = ee.Geometry.Point(*LOCATION).buffer(ROI_RADIUS) # # Load a raw Landsat ImageCollection for a single year. # start_date = str(datetime.date(YEAR, 1, 1)) # end_date = str(datetime.date(YEAR, 12, 31)) # collection = ( # ee.ImageCollection('LANDSAT/LC08/C02/T1') # .filterDate(start_date, end_date) # .filterBounds(roi) # ) # indices = load_indices(INDICES_FILE) # push_to_md(START_YEAR, END_YEAR, 'Test Project') with gr.Column(): # map = gr.Plot().style() with gr.Row(): start_year = gr.Number(value=2017, label="Start Year", precision=0) end_year = gr.Number(value=2022, label="End Year", precision=0) project_name = gr.Textbox(label="Project Name") # boroughs = gr.CheckboxGroup(choices=["Queens", "Brooklyn", "Manhattan", "Bronx", "Staten Island"], value=["Queens", "Brooklyn"], label="Select Methodology:") # btn = gr.Button(value="Update Filter") with gr.Row(): calc_btn = gr.Button(value="Calculate!") view_btn = gr.Button(value="View all") save_btn = gr.Button(value="Save") results_df = gr.Dataframe( headers=["Year", "Project Name", "Score"], datatype=["number", "str", "number"], label="Biodiversity scores by year", ) # demo.load(filter_map, [min_price, max_price, boroughs], map) # btn.click(filter_map, [min_price, max_price, boroughs], map) calc_btn.click( calculate_biodiversity_score, inputs=[start_year, end_year, project_name], outputs=results_df, ) view_btn.click(view_all, outputs=results_df) save_btn.click(push_to_md) demo.launch()