Spaces:
Running
Running
刘鑫
commited on
Commit
·
8bf7b95
1
Parent(s):
608ef95
init
Browse files- .gitattributes +9 -0
- app.py +557 -0
- assets/voxcpm-logo.png +3 -0
- examples/example.wav +3 -0
- requirements.txt +5 -0
.gitattributes
CHANGED
@@ -33,3 +33,12 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.wav filter=lfs diff=lfs merge=lfs -text
|
37 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
38 |
+
*.mp3 filter=lfs diff=lfs merge=lfs -text
|
39 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
40 |
+
*.avi filter=lfs diff=lfs merge=lfs -text
|
41 |
+
*.mov filter=lfs diff=lfs merge=lfs -text
|
42 |
+
*.gif filter=lfs diff=lfs merge=lfs -text
|
43 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
44 |
+
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,557 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import logging
|
4 |
+
import traceback
|
5 |
+
import numpy as np
|
6 |
+
import gradio as gr
|
7 |
+
from typing import Optional, Tuple
|
8 |
+
import soundfile as sf
|
9 |
+
from pathlib import Path
|
10 |
+
import requests
|
11 |
+
import json
|
12 |
+
import base64
|
13 |
+
import io
|
14 |
+
import tempfile
|
15 |
+
import uuid
|
16 |
+
import time
|
17 |
+
|
18 |
+
# 配置日志
|
19 |
+
logging.basicConfig(
|
20 |
+
level=logging.INFO,
|
21 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
22 |
+
handlers=[
|
23 |
+
logging.StreamHandler(sys.stdout),
|
24 |
+
logging.FileHandler('app.log', mode='a', encoding='utf-8')
|
25 |
+
]
|
26 |
+
)
|
27 |
+
logger = logging.getLogger(__name__)
|
28 |
+
|
29 |
+
# 启动日志
|
30 |
+
logger.info("="*50)
|
31 |
+
logger.info("🚀 VoxCPM应用启动中...")
|
32 |
+
logger.info(f"Python版本: {sys.version}")
|
33 |
+
logger.info(f"工作目录: {os.getcwd()}")
|
34 |
+
logger.info(f"环境变量PORT: {os.environ.get('PORT', '未设置')}")
|
35 |
+
logger.info(f"环境变量RAY_SERVE_URL: {os.environ.get('RAY_SERVE_URL', '未设置')}")
|
36 |
+
logger.info("="*50)
|
37 |
+
|
38 |
+
|
39 |
+
class RayServeVoxCPMClient:
|
40 |
+
"""Client wrapper that talks to Ray Serve TTS API."""
|
41 |
+
|
42 |
+
def __init__(self) -> None:
|
43 |
+
logger.info("📡 初始化RayServeVoxCPMClient...")
|
44 |
+
|
45 |
+
try:
|
46 |
+
# Ray Serve API URL (can be overridden via env)
|
47 |
+
self.RAY_SERVE_DEFAULT_URL = "https://d09162224-pytorch251-cuda124-u-5512-iyr4lse3-8970.550c.cloud"
|
48 |
+
self.api_url = self._resolve_server_url()
|
49 |
+
logger.info(f"🔗 准备连接到Ray Serve API: {self.api_url}")
|
50 |
+
|
51 |
+
# Test connection
|
52 |
+
logger.info("⏳ 测试Ray Serve连接...")
|
53 |
+
health_start = time.time()
|
54 |
+
health_response = requests.get(f"{self.api_url}/health", timeout=10)
|
55 |
+
health_response.raise_for_status()
|
56 |
+
health_time = time.time() - health_start
|
57 |
+
logger.info(f"✅ 成功连接到Ray Serve API: {self.api_url} (耗时: {health_time:.3f}秒)")
|
58 |
+
|
59 |
+
except Exception as e:
|
60 |
+
logger.error(f"❌ 初始化RayServeVoxCPMClient失败: {e}")
|
61 |
+
logger.error(f"错误详情: {traceback.format_exc()}")
|
62 |
+
raise
|
63 |
+
|
64 |
+
# ----------- Helpers -----------
|
65 |
+
def _resolve_server_url(self) -> str:
|
66 |
+
"""Resolve Ray Serve API base URL, prefer env RAY_SERVE_URL."""
|
67 |
+
return os.environ.get("RAY_SERVE_URL", self.RAY_SERVE_DEFAULT_URL).rstrip("/")
|
68 |
+
|
69 |
+
def _audio_file_to_base64(self, audio_file_path: str) -> str:
|
70 |
+
"""
|
71 |
+
将音频文件转换为base64编码
|
72 |
+
|
73 |
+
Args:
|
74 |
+
audio_file_path: 音频文件路径
|
75 |
+
|
76 |
+
Returns:
|
77 |
+
base64编码的音频数据
|
78 |
+
"""
|
79 |
+
try:
|
80 |
+
with open(audio_file_path, 'rb') as f:
|
81 |
+
audio_bytes = f.read()
|
82 |
+
return base64.b64encode(audio_bytes).decode('utf-8')
|
83 |
+
except Exception as e:
|
84 |
+
logger.error(f"音频文件转base64失败: {e}")
|
85 |
+
raise
|
86 |
+
|
87 |
+
def _base64_to_audio_array(self, base64_audio: str, sample_rate: int = 16000) -> Tuple[int, np.ndarray]:
|
88 |
+
"""
|
89 |
+
将base64编码的音频转换为numpy数组
|
90 |
+
|
91 |
+
Args:
|
92 |
+
base64_audio: base64编码的音频数据
|
93 |
+
sample_rate: 期望的采样率
|
94 |
+
|
95 |
+
Returns:
|
96 |
+
(sample_rate, audio_array) tuple
|
97 |
+
"""
|
98 |
+
try:
|
99 |
+
# 解码base64
|
100 |
+
audio_bytes = base64.b64decode(base64_audio)
|
101 |
+
|
102 |
+
# 创建临时文件
|
103 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as tmp_file:
|
104 |
+
tmp_file.write(audio_bytes)
|
105 |
+
tmp_file_path = tmp_file.name
|
106 |
+
|
107 |
+
# 读取音频文件
|
108 |
+
try:
|
109 |
+
audio_data, sr = sf.read(tmp_file_path, dtype='float32')
|
110 |
+
|
111 |
+
# 转换为单声道
|
112 |
+
if audio_data.ndim == 2:
|
113 |
+
audio_data = audio_data[:, 0]
|
114 |
+
|
115 |
+
# 转换为int16格式(Gradio期望的格式)
|
116 |
+
audio_int16 = (audio_data * 32767).astype(np.int16)
|
117 |
+
|
118 |
+
return sr, audio_int16
|
119 |
+
finally:
|
120 |
+
# 清理临时文件
|
121 |
+
try:
|
122 |
+
os.unlink(tmp_file_path)
|
123 |
+
except:
|
124 |
+
pass
|
125 |
+
|
126 |
+
except Exception as e:
|
127 |
+
logger.error(f"base64转音频数组失败: {e}")
|
128 |
+
raise
|
129 |
+
|
130 |
+
# ----------- Functional endpoints -----------
|
131 |
+
def prompt_wav_recognition(self, prompt_wav: Optional[str]) -> str:
|
132 |
+
"""Use Ray Serve ASR API for speech recognition."""
|
133 |
+
logger.info(f"🎵 开始语音识别,输入文件: {prompt_wav}")
|
134 |
+
|
135 |
+
if prompt_wav is None or not prompt_wav.strip():
|
136 |
+
logger.info("⚠️ 没有提供音频文件,跳过语音识别")
|
137 |
+
return ""
|
138 |
+
|
139 |
+
try:
|
140 |
+
start_time = time.time()
|
141 |
+
logger.info(f"📁 处理音频文件: {prompt_wav}")
|
142 |
+
|
143 |
+
# 将音频文件转换为base64
|
144 |
+
convert_start = time.time()
|
145 |
+
audio_base64 = self._audio_file_to_base64(prompt_wav)
|
146 |
+
convert_time = time.time() - convert_start
|
147 |
+
logger.info(f"🔄 音频转base64耗时: {convert_time:.3f}秒")
|
148 |
+
|
149 |
+
logger.info("📡 调用Ray Serve ASR API...")
|
150 |
+
|
151 |
+
# 构建ASR请求
|
152 |
+
asr_request = {
|
153 |
+
"reqid": str(uuid.uuid4()),
|
154 |
+
"audio_data": audio_base64,
|
155 |
+
"language": "auto",
|
156 |
+
"use_itn": True
|
157 |
+
}
|
158 |
+
|
159 |
+
# 调用ASR接口
|
160 |
+
api_start = time.time()
|
161 |
+
response = requests.post(
|
162 |
+
f"{self.api_url}/asr",
|
163 |
+
json=asr_request,
|
164 |
+
headers={"Content-Type": "application/json"},
|
165 |
+
timeout=30
|
166 |
+
)
|
167 |
+
response.raise_for_status()
|
168 |
+
api_time = time.time() - api_start
|
169 |
+
|
170 |
+
result_data = response.json()
|
171 |
+
total_time = time.time() - start_time
|
172 |
+
|
173 |
+
logger.info(f"⏱️ ASR API请求耗时: {api_time:.3f}秒")
|
174 |
+
logger.info(f"⏱️ ASR总耗时: {total_time:.3f}秒")
|
175 |
+
logger.info(f"✅ 语音识别完成,响应: {result_data}")
|
176 |
+
|
177 |
+
# 检查响应状态
|
178 |
+
if result_data.get("code") == 3000:
|
179 |
+
recognized_text = result_data.get("text", "")
|
180 |
+
logger.info(f"🎯 识别结果: '{recognized_text}'")
|
181 |
+
return recognized_text
|
182 |
+
else:
|
183 |
+
logger.warning(f"⚠️ ASR识别失败: {result_data.get('message', 'Unknown error')}")
|
184 |
+
return ""
|
185 |
+
|
186 |
+
except Exception as e:
|
187 |
+
logger.error(f"❌ 语音识别失败: {e}")
|
188 |
+
logger.error(f"错误详情: {traceback.format_exc()}")
|
189 |
+
return ""
|
190 |
+
|
191 |
+
def _call_ray_serve_generate(
|
192 |
+
self,
|
193 |
+
text: str,
|
194 |
+
prompt_wav_path: Optional[str] = None,
|
195 |
+
prompt_text: Optional[str] = None,
|
196 |
+
cfg_value: float = 2.0,
|
197 |
+
inference_timesteps: int = 10,
|
198 |
+
do_normalize: bool = True,
|
199 |
+
denoise: bool = True,
|
200 |
+
) -> Tuple[int, np.ndarray]:
|
201 |
+
"""
|
202 |
+
Call Ray Serve /generate API and return (sample_rate, waveform).
|
203 |
+
"""
|
204 |
+
logger.info(f"🔥 调用Ray Serve生成API,文本: '{text[:60]}...'")
|
205 |
+
|
206 |
+
try:
|
207 |
+
start_time = time.time()
|
208 |
+
|
209 |
+
# 构建请求数据
|
210 |
+
prepare_start = time.time()
|
211 |
+
audio_config = {
|
212 |
+
"voice_type": "default", # 使用默认模式,或者可以根据需要调整
|
213 |
+
"encoding": "wav",
|
214 |
+
"speed_ratio": 1.0,
|
215 |
+
"cfg_value": cfg_value,
|
216 |
+
"inference_timesteps": inference_timesteps
|
217 |
+
}
|
218 |
+
|
219 |
+
# 如果有参考音频和文本,使用voice-clone模式
|
220 |
+
if prompt_wav_path and prompt_text:
|
221 |
+
logger.info("🎭 使用语音克隆模式")
|
222 |
+
convert_start = time.time()
|
223 |
+
audio_base64 = self._audio_file_to_base64(prompt_wav_path)
|
224 |
+
convert_time = time.time() - convert_start
|
225 |
+
logger.info(f"🔄 参考音频转base64耗时: {convert_time:.3f}秒")
|
226 |
+
|
227 |
+
audio_config.update({
|
228 |
+
"voice_type": None, # 清除voice_type,使用克隆模式
|
229 |
+
"prompt_wav": audio_base64,
|
230 |
+
"prompt_text": prompt_text
|
231 |
+
})
|
232 |
+
else:
|
233 |
+
logger.info("🎤 使用默认语音模式")
|
234 |
+
|
235 |
+
request_data = {
|
236 |
+
"audio": audio_config,
|
237 |
+
"request": {
|
238 |
+
"reqid": str(uuid.uuid4()),
|
239 |
+
"text": text,
|
240 |
+
"operation": "query",
|
241 |
+
"do_normalize": do_normalize,
|
242 |
+
"denoise": denoise
|
243 |
+
}
|
244 |
+
}
|
245 |
+
prepare_time = time.time() - prepare_start
|
246 |
+
logger.info(f"⏱️ 请求数据准备耗时: {prepare_time:.3f}秒")
|
247 |
+
|
248 |
+
logger.info(f"📡 发送请求到Ray Serve: {self.api_url}/generate")
|
249 |
+
logger.info(f"📊 请求参数: CFG={cfg_value}, 推理步数={inference_timesteps}, 文本长度={len(text)}")
|
250 |
+
|
251 |
+
# 调用生成接口
|
252 |
+
api_start = time.time()
|
253 |
+
response = requests.post(
|
254 |
+
f"{self.api_url}/generate",
|
255 |
+
json=request_data,
|
256 |
+
headers={"Content-Type": "application/json"},
|
257 |
+
timeout=120 # TTS可能需要较长时间
|
258 |
+
)
|
259 |
+
response.raise_for_status()
|
260 |
+
api_time = time.time() - api_start
|
261 |
+
|
262 |
+
result_data = response.json()
|
263 |
+
logger.info(f"⏱️ TTS API请求耗时: {api_time:.3f}秒")
|
264 |
+
logger.info(f"✅ Ray Serve响应: code={result_data.get('code')}, message={result_data.get('message')}")
|
265 |
+
|
266 |
+
# 检查响应状态
|
267 |
+
if result_data.get("code") == 3000:
|
268 |
+
# 成功生成音频
|
269 |
+
audio_base64 = result_data.get("data", "")
|
270 |
+
if not audio_base64:
|
271 |
+
raise RuntimeError("Ray Serve返回的音频数据为空")
|
272 |
+
|
273 |
+
# 将base64音频转换为numpy数组
|
274 |
+
decode_start = time.time()
|
275 |
+
sample_rate, audio_array = self._base64_to_audio_array(audio_base64)
|
276 |
+
decode_time = time.time() - decode_start
|
277 |
+
total_time = time.time() - start_time
|
278 |
+
|
279 |
+
duration_ms = result_data.get('addition', {}).get('duration', 'unknown')
|
280 |
+
logger.info(f"🔄 音频解码耗时: {decode_time:.3f}秒")
|
281 |
+
logger.info(f"⏱️ TTS总耗时: {total_time:.3f}秒")
|
282 |
+
logger.info(f"🎵 音频生成成功,采样率: {sample_rate}, 时长: {duration_ms}ms")
|
283 |
+
logger.info(f"📈 性能指标: API={api_time:.3f}s, 解码={decode_time:.3f}s, 总计={total_time:.3f}s")
|
284 |
+
|
285 |
+
return sample_rate, audio_array
|
286 |
+
else:
|
287 |
+
error_msg = result_data.get("message", "Unknown error")
|
288 |
+
raise RuntimeError(f"Ray Serve生成失败: {error_msg}")
|
289 |
+
|
290 |
+
except requests.exceptions.RequestException as e:
|
291 |
+
logger.error(f"❌ Ray Serve请求失败: {e}")
|
292 |
+
raise RuntimeError(f"Failed to connect Ray Serve TTS service: {e}. Check RAY_SERVE_URL='{self.api_url}' and service status")
|
293 |
+
except Exception as e:
|
294 |
+
logger.error(f"❌ Ray Serve调用异常: {e}")
|
295 |
+
raise
|
296 |
+
|
297 |
+
def generate_tts_audio(
|
298 |
+
self,
|
299 |
+
text_input: str,
|
300 |
+
prompt_wav_path_input: Optional[str] = None,
|
301 |
+
prompt_text_input: Optional[str] = None,
|
302 |
+
cfg_value_input: float = 2.0,
|
303 |
+
inference_timesteps_input: int = 10,
|
304 |
+
do_normalize: bool = True,
|
305 |
+
denoise: bool = True,
|
306 |
+
) -> Tuple[int, np.ndarray]:
|
307 |
+
logger.info("🎤 开始TTS音频生成...")
|
308 |
+
logger.info(f"📝 输入文本: '{text_input[:60]}{'...' if len(text_input) > 60 else ''}'")
|
309 |
+
logger.info(f"🎵 参考音频: {prompt_wav_path_input or '无'}")
|
310 |
+
logger.info(f"📄 参考文本: '{prompt_text_input[:30]}{'...' if prompt_text_input and len(prompt_text_input) > 30 else ''}' " if prompt_text_input else "无")
|
311 |
+
logger.info(f"⚙️ CFG值: {cfg_value_input}, 推理步数: {inference_timesteps_input}")
|
312 |
+
logger.info(f"🔧 文本正规化: {do_normalize}, 音频降噪: {denoise}")
|
313 |
+
|
314 |
+
try:
|
315 |
+
full_start_time = time.time()
|
316 |
+
|
317 |
+
text = (text_input or "").strip()
|
318 |
+
if len(text) == 0:
|
319 |
+
logger.error("❌ 输入文本为空")
|
320 |
+
raise ValueError("Please input text to synthesize.")
|
321 |
+
|
322 |
+
prompt_wav_path = prompt_wav_path_input or ""
|
323 |
+
prompt_text = prompt_text_input or ""
|
324 |
+
cfg_value = cfg_value_input if cfg_value_input is not None else 2.0
|
325 |
+
inference_timesteps = inference_timesteps_input if inference_timesteps_input is not None else 10
|
326 |
+
|
327 |
+
logger.info("🚀 调用Ray Serve TTS生成引擎...")
|
328 |
+
generate_start = time.time()
|
329 |
+
sr, wav_np = self._call_ray_serve_generate(
|
330 |
+
text=text,
|
331 |
+
prompt_wav_path=prompt_wav_path,
|
332 |
+
prompt_text=prompt_text,
|
333 |
+
cfg_value=cfg_value,
|
334 |
+
inference_timesteps=inference_timesteps,
|
335 |
+
do_normalize=do_normalize,
|
336 |
+
denoise=denoise,
|
337 |
+
)
|
338 |
+
generate_time = time.time() - generate_start
|
339 |
+
full_time = time.time() - full_start_time
|
340 |
+
|
341 |
+
logger.info(f"✅ TTS生成完成,采样率: {sr}, 音频长度: {len(wav_np) if hasattr(wav_np, '__len__') else 'unknown'}")
|
342 |
+
logger.info(f"🏁 完整TTS流程耗时: {full_time:.3f}秒 (生成={generate_time:.3f}s)")
|
343 |
+
return (sr, wav_np)
|
344 |
+
|
345 |
+
except Exception as e:
|
346 |
+
logger.error(f"❌ TTS音频生成失败: {e}")
|
347 |
+
logger.error(f"错误详情: {traceback.format_exc()}")
|
348 |
+
raise
|
349 |
+
|
350 |
+
|
351 |
+
# ---------- UI Builders ----------
|
352 |
+
|
353 |
+
def create_demo_interface(client: RayServeVoxCPMClient):
|
354 |
+
"""Build the Gradio UI for Gradio API VoxCPM client."""
|
355 |
+
logger.info("🎨 开始创建Gradio界面...")
|
356 |
+
|
357 |
+
try:
|
358 |
+
assets_path = Path.cwd().absolute()/"assets"
|
359 |
+
logger.info(f"📁 设置静态资源路径: {assets_path}")
|
360 |
+
gr.set_static_paths(paths=[assets_path])
|
361 |
+
logger.info("✅ 静态资源路径设置完成")
|
362 |
+
except Exception as e:
|
363 |
+
logger.warning(f"⚠️ 静态资源路径设置失败: {e}")
|
364 |
+
logger.warning("继续创建界面...")
|
365 |
+
|
366 |
+
with gr.Blocks(
|
367 |
+
theme=gr.themes.Soft(
|
368 |
+
primary_hue="blue",
|
369 |
+
secondary_hue="gray",
|
370 |
+
neutral_hue="slate",
|
371 |
+
font=[gr.themes.GoogleFont("Inter"), "Arial", "sans-serif"]
|
372 |
+
),
|
373 |
+
css="""
|
374 |
+
.logo-container {
|
375 |
+
text-align: center;
|
376 |
+
margin: 0.5rem 0 1rem 0;
|
377 |
+
}
|
378 |
+
.logo-container img {
|
379 |
+
height: 80px;
|
380 |
+
width: auto;
|
381 |
+
max-width: 200px;
|
382 |
+
display: inline-block;
|
383 |
+
}
|
384 |
+
/* Bold labels for specific checkboxes */
|
385 |
+
#chk_denoise label,
|
386 |
+
#chk_denoise span,
|
387 |
+
#chk_normalize label,
|
388 |
+
#chk_normalize span {
|
389 |
+
font-weight: 600;
|
390 |
+
}
|
391 |
+
"""
|
392 |
+
) as interface:
|
393 |
+
gr.HTML('<div class="logo-container"><img src="/gradio_api/file=assets/voxcpm-logo.png" alt="VoxCPM Logo"></div>')
|
394 |
+
|
395 |
+
# Quick Start
|
396 |
+
with gr.Accordion("📋 Quick Start Guide | 快速入门", open=False):
|
397 |
+
gr.Markdown("""
|
398 |
+
### How to Use |使用说明
|
399 |
+
1. **(Optional) Provide a Voice Prompt** - Upload or record an audio clip to provide the desired voice characteristics for synthesis.
|
400 |
+
**(可选)提供参考声音** - 上传或录制一段音频,为声音合成提供音色、语调和情感等个性化特征
|
401 |
+
2. **(Optional) Enter prompt text** - If you provided a voice prompt, enter the corresponding transcript here (auto-recognition available).
|
402 |
+
**(可选项)输入参考文本** - 如果提供了参考语音,请输入其对应的文本内容(支持自动识别)。
|
403 |
+
3. **Enter target text** - Type the text you want the model to speak.
|
404 |
+
**输入目标文本** - 输入您希望模型朗读的文字内容。
|
405 |
+
4. **Generate Speech** - Click the "Generate" button to create your audio.
|
406 |
+
**生成语音** - 点击"生成"按钮,即可为您创造出音频。
|
407 |
+
""")
|
408 |
+
|
409 |
+
# Pro Tips
|
410 |
+
with gr.Accordion("💡 Pro Tips |使用建议", open=False):
|
411 |
+
gr.Markdown("""
|
412 |
+
### Prompt Speech Enhancement|参考语音降噪
|
413 |
+
- **Enable** to remove background noise for a clean, studio-like voice, with an external ZipEnhancer component.
|
414 |
+
**启用**:通过 ZipEnhancer 组件消除背景噪音,获得更好的音质。
|
415 |
+
- **Disable** to preserve the original audio's background atmosphere.
|
416 |
+
**禁用**:保留原始音频的背景环境声,如果想复刻相应声学环境。
|
417 |
+
|
418 |
+
### Text Normalization|文本正则化
|
419 |
+
- **Enable** to process general text with an external WeTextProcessing component.
|
420 |
+
**启用**:使用 WeTextProcessing 组件,可处理常见文本。
|
421 |
+
- **Disable** to use VoxCPM's native text understanding ability. For example, it supports phonemes input ({HH AH0 L OW1}), try it!
|
422 |
+
**禁用**:将使用 VoxCPM 内置的文本理解能力。如,支持音素输入(如 {da4}{jia1}好)和公式符号合成,尝试一下!
|
423 |
+
|
424 |
+
### CFG Value|CFG 值
|
425 |
+
- **Lower CFG** if the voice prompt sounds strained or expressive.
|
426 |
+
**调低**:如果提示语音听起来不自然或过于夸张。
|
427 |
+
- **Higher CFG** for better adherence to the prompt speech style or input text.
|
428 |
+
**调高**:为更好地贴合提示音频的风格或输入文本。
|
429 |
+
|
430 |
+
### Inference Timesteps|推理时间步
|
431 |
+
- **Lower** for faster synthesis speed.
|
432 |
+
**调低**:合成速度更快。
|
433 |
+
- **Higher** for better synthesis quality.
|
434 |
+
**调高**:合成质量更佳。
|
435 |
+
|
436 |
+
### Long Text (e.g., >5 min speech)|长文本 (如 >5分钟的合成语音)
|
437 |
+
While VoxCPM can handle long texts directly, we recommend using empty lines to break very long content into paragraphs; the model will then synthesize each paragraph individually.
|
438 |
+
虽然 VoxCPM 支持直接生成长文本,但如果目标文本过长,我们建议使用换行符将内容分段;模型将对每个段落分别合成。
|
439 |
+
""")
|
440 |
+
|
441 |
+
with gr.Row():
|
442 |
+
with gr.Column():
|
443 |
+
prompt_wav = gr.Audio(
|
444 |
+
sources=["upload", 'microphone'],
|
445 |
+
type="filepath",
|
446 |
+
label="Prompt Speech",
|
447 |
+
value="examples/example.wav"
|
448 |
+
)
|
449 |
+
DoDenoisePromptAudio = gr.Checkbox(
|
450 |
+
value=False,
|
451 |
+
label="Prompt Speech Enhancement",
|
452 |
+
elem_id="chk_denoise",
|
453 |
+
info="We use ZipEnhancer model to denoise the prompt audio."
|
454 |
+
)
|
455 |
+
with gr.Row():
|
456 |
+
prompt_text = gr.Textbox(
|
457 |
+
value="Just by listening a few minutes a day, you'll be able to eliminate negative thoughts by conditioning your mind to be more positive.",
|
458 |
+
label="Prompt Text",
|
459 |
+
placeholder="Please enter the prompt text. Automatic recognition is supported, and you can correct the results yourself..."
|
460 |
+
)
|
461 |
+
run_btn = gr.Button("Generate Speech", variant="primary")
|
462 |
+
|
463 |
+
with gr.Column():
|
464 |
+
cfg_value = gr.Slider(
|
465 |
+
minimum=1.0,
|
466 |
+
maximum=3.0,
|
467 |
+
value=2.0,
|
468 |
+
step=0.1,
|
469 |
+
label="CFG Value (Guidance Scale)",
|
470 |
+
info="Higher values increase adherence to prompt, lower values allow more creativity"
|
471 |
+
)
|
472 |
+
inference_timesteps = gr.Slider(
|
473 |
+
minimum=4,
|
474 |
+
maximum=30,
|
475 |
+
value=10,
|
476 |
+
step=1,
|
477 |
+
label="Inference Timesteps",
|
478 |
+
info="Number of inference timesteps for generation (higher values may improve quality but slower)"
|
479 |
+
)
|
480 |
+
with gr.Row():
|
481 |
+
text = gr.Textbox(
|
482 |
+
value="VoxCPM is an innovative end-to-end TTS model from ModelBest, designed to generate highly expressive speech.",
|
483 |
+
label="Target Text",
|
484 |
+
info="Default processing splits text on \\n into paragraphs; each is synthesized as a chunk and then concatenated into the final audio."
|
485 |
+
)
|
486 |
+
with gr.Row():
|
487 |
+
DoNormalizeText = gr.Checkbox(
|
488 |
+
value=False,
|
489 |
+
label="Text Normalization",
|
490 |
+
elem_id="chk_normalize",
|
491 |
+
info="We use WeTextPorcessing library to normalize the input text."
|
492 |
+
)
|
493 |
+
audio_output = gr.Audio(label="Output Audio")
|
494 |
+
|
495 |
+
# Wire events
|
496 |
+
run_btn.click(
|
497 |
+
fn=client.generate_tts_audio,
|
498 |
+
inputs=[text, prompt_wav, prompt_text, cfg_value, inference_timesteps, DoNormalizeText, DoDenoisePromptAudio],
|
499 |
+
outputs=[audio_output],
|
500 |
+
show_progress=True,
|
501 |
+
api_name="generate",
|
502 |
+
concurrency_limit=None,
|
503 |
+
)
|
504 |
+
prompt_wav.change(fn=client.prompt_wav_recognition, inputs=[prompt_wav], outputs=[prompt_text])
|
505 |
+
|
506 |
+
logger.info("🔗 事件绑定完成")
|
507 |
+
|
508 |
+
logger.info("✅ Gradio界面构建完成")
|
509 |
+
return interface
|
510 |
+
|
511 |
+
|
512 |
+
def run_demo():
|
513 |
+
"""启动演示应用"""
|
514 |
+
logger.info("🚀 开始启动VoxCPM演示应用...")
|
515 |
+
|
516 |
+
try:
|
517 |
+
# 创建客户端
|
518 |
+
logger.info("📡 创建Ray Serve API客户端...")
|
519 |
+
client = RayServeVoxCPMClient()
|
520 |
+
logger.info("✅ Ray Serve API客户端创建成功")
|
521 |
+
|
522 |
+
# 创建界面
|
523 |
+
logger.info("🎨 创建Gradio界面...")
|
524 |
+
interface = create_demo_interface(client)
|
525 |
+
logger.info("✅ Gradio界面创建成功")
|
526 |
+
|
527 |
+
# 获取端口配置
|
528 |
+
port = int(os.environ.get('PORT', 7860))
|
529 |
+
logger.info(f"🌐 准备在端口 {port} 启动服务...")
|
530 |
+
|
531 |
+
# 启动应用
|
532 |
+
logger.info("🚀 启动Gradio应用...")
|
533 |
+
interface.launch(
|
534 |
+
server_port=port,
|
535 |
+
server_name="0.0.0.0",
|
536 |
+
show_error=True,
|
537 |
+
)
|
538 |
+
logger.info("✅ 应用启动成功!")
|
539 |
+
|
540 |
+
except Exception as e:
|
541 |
+
logger.error(f"❌ 应用启动失败: {e}")
|
542 |
+
logger.error(f"错误详情: {traceback.format_exc()}")
|
543 |
+
sys.exit(1)
|
544 |
+
|
545 |
+
|
546 |
+
if __name__ == "__main__":
|
547 |
+
try:
|
548 |
+
logger.info("🎬 开始执行主程序...")
|
549 |
+
run_demo()
|
550 |
+
except KeyboardInterrupt:
|
551 |
+
logger.info("⏹️ 收到中断信号,正在退出...")
|
552 |
+
except Exception as e:
|
553 |
+
logger.error(f"💥 主程序异常退出: {e}")
|
554 |
+
logger.error(f"错误详情: {traceback.format_exc()}")
|
555 |
+
sys.exit(1)
|
556 |
+
finally:
|
557 |
+
logger.info("🔚 程序结束")
|
assets/voxcpm-logo.png
ADDED
![]() |
Git LFS Details
|
examples/example.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:009638e7474ac4eb2ca5b23d28d9114c33377eb5c91e8d6f7000a0c36d6eaa8e
|
3 |
+
size 1439096
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Core dependencies
|
2 |
+
gradio>=4.0.0
|
3 |
+
requests>=2.25.0
|
4 |
+
numpy>=1.21.0
|
5 |
+
soundfile>=0.12.1
|