File size: 8,579 Bytes
ad8152e
 
033a696
 
ad8152e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
033a696
3ca1aed
 
 
 
 
ad8152e
 
 
 
 
 
 
 
 
 
 
 
3ca1aed
ad8152e
 
 
 
 
 
 
3ca1aed
ad8152e
 
 
 
 
 
 
 
 
 
 
 
 
3ca1aed
 
 
 
 
 
 
 
 
ad8152e
 
 
 
 
 
 
 
 
 
3ca1aed
 
ad8152e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
033a696
ad8152e
3ca1aed
 
 
 
 
ad8152e
 
 
 
 
033a696
ad8152e
 
 
 
 
033a696
ad8152e
 
 
 
 
 
 
 
3ca1aed
ad8152e
 
 
 
 
 
 
 
 
 
 
 
3ca1aed
 
 
 
 
 
 
 
 
ad8152e
 
 
 
 
 
 
 
 
 
 
 
3ca1aed
ad8152e
3ca1aed
 
 
 
033a696
 
ad8152e
033a696
 
 
ad8152e
033a696
ad8152e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import abc

import gradio as gr

from gen_table import *
from meta_data import *

head_style = """
<style>
@media (min-width: 1536px)
{
    .gradio-container {
        min-width: var(--size-full) !important;
    }
}
</style>
"""

with gr.Blocks(title="Math Leaderboard", head=head_style) as demo:
    results = load_results()['results']
    N_MODEL = len(results)
    DATASETS = []
    for m in results:
        DATASETS.extend(results[m].keys())
    DATASETS = [d for d in set(DATASETS) if d != 'META']
    

    N_DATA = len(DATASETS)
    structs = [abc.abstractproperty() for _ in range(N_DATA)]

    gr.Markdown(LEADERBORAD_INTRODUCTION)

    with gr.Tabs(elem_classes='tab-buttons') as tabs:
        with gr.TabItem('πŸ… LMM Math Leaderboard', elem_id='main', id=0):
            _, check_box = BUILD_L1_DF(results)

            table = generate_table(results)
            table['Rank'] = list(range(1, len(table) + 1))

            type_map = check_box['type_map']
            type_map['Rank'] = 'number'

            checkbox_group = gr.CheckboxGroup(
                choices=check_box['all'],
                value=check_box['required'],
                label='Evaluation Dimension',
                interactive=True,
            )

            headers = ['Rank'] + check_box['essential'] + checkbox_group.value
            with gr.Row():
                model_name = gr.Textbox(
                    value='Input the Model Name (fuzzy)', 
                    label='Model Name', 
                    interactive=True,
                    visible=True)
                model_size = gr.CheckboxGroup(
                    choices=MODEL_SIZE,
                    value=MODEL_SIZE,
                    label='Model Size',
                    interactive=True
                )
                model_type = gr.CheckboxGroup(
                    choices=MODEL_TYPE,
                    value=MODEL_TYPE,
                    label='Model Type',
                    interactive=True
                )

            data_component = gr.components.DataFrame(
                value=table[headers],
                type='pandas',
                datatype=[type_map[x] for x in headers],
                interactive=False,
                visible=True)

            def filter_df(fields, model_name, model_size, model_type):
                results = load_results()['results']
                headers = ['Rank'] + check_box['essential'] + fields

                df = generate_table(results)

                df['flag'] = [model_size_flag(x, model_size) for x in df['Param (B)']]
                df = df[df['flag']]
                df.pop('flag')
                if len(df):
                    df['flag'] = [model_type_flag(df.iloc[i], model_type) for i in range(len(df))]
                    df = df[df['flag']]
                    df.pop('flag')
                df['Rank'] = list(range(1, len(df) + 1))
                default_val = 'Input the Model Name (fuzzy)'
                if model_name != default_val:
                    print(model_name)
                    model_name = model_name.lower()
                    method_names = [x.split('</a>')[0].split('>')[-1].lower() for x in df['Method']]
                    flag = [model_name in name for name in method_names]
                    df['TEMP_FLAG'] = flag
                    df = df[df['TEMP_FLAG'] == True] 
                    df.pop('TEMP_FLAG')

                comp = gr.components.DataFrame(
                    value=df[headers],
                    type='pandas',
                    datatype=[type_map[x] for x in headers],
                    interactive=False,
                    visible=True)
                return comp

            for cbox in [checkbox_group, model_size, model_type]:
                cbox.change(fn=filter_df, inputs=[checkbox_group, model_name, model_size, model_type], outputs=data_component)
            model_name.submit(fn=filter_df, inputs=[checkbox_group, model_name, model_size, model_type], outputs=data_component)

        for i, dataset in enumerate(DATASETS):
            tab_name_map = {
                'MathVista': 'MathVista (Test Mini)',
                'MathVerse': 'MathVerse (Vision Only)',
            }

            with gr.TabItem(
                f'πŸ“Š {dataset if dataset not in tab_name_map else tab_name_map[dataset]}', elem_id=dataset, id=i + 2):

                s = structs[i]
                s.table, s.check_box = BUILD_L2_DF(results, dataset)
                s.type_map = s.check_box['type_map']
                s.type_map['Rank'] = 'number'

                s.checkbox_group = gr.CheckboxGroup(
                    choices=s.check_box['all'],
                    value=s.check_box['required'],
                    label=f'{dataset} CheckBoxes',
                    interactive=True,
                )
                s.headers = ['Rank'] + s.check_box['essential'] + s.checkbox_group.value
                s.table['Rank'] = list(range(1, len(s.table) + 1))

                with gr.Row():
                    s.model_name = gr.Textbox(
                        value='Input the Model Name (fuzzy)', 
                        label='Model Name', 
                        interactive=True,
                        visible=True)
                    s.model_size = gr.CheckboxGroup(
                        choices=MODEL_SIZE,
                        value=MODEL_SIZE,
                        label='Model Size',
                        interactive=True
                    )
                    s.model_type = gr.CheckboxGroup(
                        choices=MODEL_TYPE,
                        value=MODEL_TYPE,
                        label='Model Type',
                        interactive=True
                    )
                s.data_component = gr.components.DataFrame(
                    value=s.table[s.headers],
                    type='pandas',
                    datatype=[s.type_map[x] for x in s.headers],
                    interactive=False,
                    visible=True)
                s.dataset = gr.Textbox(value=dataset, label=dataset, visible=False)

                def filter_df_l2(dataset_name, fields, model_name, model_size, model_type):
                    results = load_results()['results']
                    s = structs[DATASETS.index(dataset_name)]
                    headers = ['Rank'] + s.check_box['essential'] + fields
                    df = cp.deepcopy(s.table)
                    df['flag'] = [model_size_flag(x, model_size) for x in df['Param (B)']]
                    df = df[df['flag']]
                    df.pop('flag')
                    if len(df):
                        df['flag'] = [model_type_flag(df.iloc[i], model_type) for i in range(len(df))]
                        df = df[df['flag']]
                        df.pop('flag')
                    df['Rank'] = list(range(1, len(df) + 1))
                    default_val = 'Input the Model Name (fuzzy)'
                    if model_name != default_val:
                        print(model_name)
                        model_name = model_name.lower()
                        method_names = [x.split('</a>')[0].split('>')[-1].lower() for x in df['Method']]
                        flag = [model_name in name for name in method_names]
                        df['TEMP_FLAG'] = flag
                        df = df[df['TEMP_FLAG'] == True] 
                        df.pop('TEMP_FLAG')

                    comp = gr.components.DataFrame(
                        value=df[headers],
                        type='pandas',
                        datatype=[s.type_map[x] for x in headers],
                        interactive=False,
                        visible=True)
                    return comp

                for cbox in [s.checkbox_group, s.model_size, s.model_type]:
                    cbox.change(
                        fn=filter_df_l2,
                        inputs=[s.dataset, s.checkbox_group, s.model_name, s.model_size, s.model_type],
                        outputs=s.data_component)
                s.model_name.submit(
                    fn=filter_df_l2, 
                    inputs=[s.dataset, s.checkbox_group, s.model_name, s.model_size, s.model_type],
                    outputs=s.data_component)

    with gr.Row():
        with gr.Accordion('Citation', open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                elem_id='citation-button')

if __name__ == '__main__':
    demo.launch(server_name='0.0.0.0')