File size: 6,180 Bytes
ad8152e
 
033a696
 
ad8152e
 
 
 
 
 
 
 
 
 
 
 
 
 
1b0ca05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad8152e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b0ca05
 
ad8152e
 
 
 
 
 
 
 
1b0ca05
033a696
 
ad8152e
033a696
 
 
ad8152e
033a696
ad8152e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import abc

import gradio as gr

from gen_table import *
from meta_data import *

head_style = """
<style>
@media (min-width: 1536px)
{
    .gradio-container {
        min-width: var(--size-full) !important;
    }
}
</style>
"""


def math_main_tab(results):
    _, check_box = BUILD_L1_DF(results)
    table = generate_table(results)
    table['Rank'] = list(range(1, len(table) + 1))
    type_map = check_box['type_map']
    type_map['Rank'] = 'number'

    checkbox_group = gr.CheckboxGroup(choices=check_box['all'], value=check_box['required'], label='Evaluation Dimension')

    headers = ['Rank'] + check_box['essential'] + checkbox_group.value
    with gr.Row():
        model_name = gr.Textbox(value='Input the Model Name (fuzzy)', label='Model Name')
        model_size = gr.CheckboxGroup(choices=MODEL_SIZE, value=MODEL_SIZE, label='Model Size')
        model_type = gr.CheckboxGroup(choices=MODEL_TYPE, value=MODEL_TYPE, label='Model Type')

    data_component = gr.components.DataFrame(value=table[headers], datatype=[type_map[x] for x in headers])

    def filter_df(fields, model_name, model_size, model_type):
        results = load_results()['results']
        headers = ['Rank'] + check_box['essential'] + fields

        df = generate_table(results)

        df['flag'] = [model_size_flag(x, model_size) for x in df['Param (B)']]
        df = df[df['flag']]
        df.pop('flag')
        if len(df):
            df['flag'] = [model_type_flag(df.iloc[i], model_type) for i in range(len(df))]
            df = df[df['flag']]
            df.pop('flag')
        df['Rank'] = list(range(1, len(df) + 1))
        default_val = 'Input the Model Name (fuzzy)'
        if model_name != default_val:
            method_names = [x.split('</a>')[0].split('>')[-1].lower() for x in df['Method']]
            flag = [model_name.lower() in name for name in method_names]
            df['TEMP'] = flag
            df = df[df['TEMP'] == True] 
            df.pop('TEMP')

        comp = gr.components.DataFrame(value=df[headers], datatype=[type_map[x] for x in headers])
        return comp

    for cbox in [checkbox_group, model_size, model_type]:
        cbox.change(fn=filter_df, inputs=[checkbox_group, model_name, model_size, model_type], outputs=data_component)
    model_name.submit(fn=filter_df, inputs=[checkbox_group, model_name, model_size, model_type], outputs=data_component)


def dataset_tab(results, struct, dataset):
    s = struct
    s.table, s.check_box = BUILD_L2_DF(results, dataset)
    s.type_map = s.check_box['type_map']
    s.type_map['Rank'] = 'number'

    s.checkbox_group = gr.CheckboxGroup(choices=s.check_box['all'], value=s.check_box['required'], label=f'{dataset} CheckBoxes')
    s.headers = ['Rank'] + s.check_box['essential'] + s.checkbox_group.value
    s.table['Rank'] = list(range(1, len(s.table) + 1))

    with gr.Row():
        s.model_name = gr.Textbox(value='Input the Model Name (fuzzy)', label='Model Name')
        s.model_size = gr.CheckboxGroup(choices=MODEL_SIZE, value=MODEL_SIZE, label='Model Size')
        s.model_type = gr.CheckboxGroup(choices=MODEL_TYPE, value=MODEL_TYPE, label='Model Type')

    s.data_component = gr.components.DataFrame(value=s.table[s.headers], datatype=[s.type_map[x] for x in s.headers])
    s.dataset = gr.Textbox(value=dataset, label=dataset, visible=False)

    def filter_df_l2(dataset_name, fields, model_name, model_size, model_type):
        results = load_results()['results']
        s = structs[DATASETS.index(dataset_name)]
        headers = ['Rank'] + s.check_box['essential'] + fields
        df = cp.deepcopy(s.table)
        df['flag'] = [model_size_flag(x, model_size) for x in df['Param (B)']]
        df = df[df['flag']]
        df.pop('flag')
        if len(df):
            df['flag'] = [model_type_flag(df.iloc[i], model_type) for i in range(len(df))]
            df = df[df['flag']]
            df.pop('flag')
        df['Rank'] = list(range(1, len(df) + 1))
        default_val = 'Input the Model Name (fuzzy)'
        if model_name != default_val:
            method_names = [x.split('</a>')[0].split('>')[-1].lower() for x in df['Method']]
            flag = [model_name.lower() in name for name in method_names]
            df['TEMP'] = flag
            df = df[df['TEMP'] == True] 
            df.pop('TEMP')

        comp = gr.components.DataFrame(value=df[headers], datatype=[s.type_map[x] for x in headers])
        return comp

    for cbox in [s.checkbox_group, s.model_size, s.model_type]:
        cbox.change(
            fn=filter_df_l2,
            inputs=[s.dataset, s.checkbox_group, s.model_name, s.model_size, s.model_type],
            outputs=s.data_component)
    s.model_name.submit(
        fn=filter_df_l2, 
        inputs=[s.dataset, s.checkbox_group, s.model_name, s.model_size, s.model_type],
        outputs=s.data_component)

    
with gr.Blocks(title="Math Leaderboard", head=head_style) as demo:
    results = load_results()['results']
    N_MODEL = len(results)
    DATASETS = []
    for m in results:
        DATASETS.extend(results[m].keys())
    DATASETS = [d for d in set(DATASETS) if d != 'META']
    

    N_DATA = len(DATASETS)
    structs = [abc.abstractproperty() for _ in range(N_DATA)]

    gr.Markdown(LEADERBORAD_INTRODUCTION)

    with gr.Tabs(elem_classes='tab-buttons') as tabs:
        with gr.TabItem('πŸ… LMM Math Leaderboard', elem_id='main', id=0):
            math_main_tab(results)
            
        for i, dataset in enumerate(DATASETS):
            tab_name_map = {
                'MathVista': 'MathVista (Test Mini)',
                'MathVerse': 'MathVerse (Vision Only)',
            }

            with gr.TabItem(
                f'πŸ“Š {dataset if dataset not in tab_name_map else tab_name_map[dataset]}', elem_id=dataset, id=i + 2):
                dataset_tab(results, structs[i], dataset)

    with gr.Row():
        with gr.Accordion('Citation', open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                elem_id='citation-button')

if __name__ == '__main__':
    demo.launch(server_name='0.0.0.0')