# CONSTANTS-URL URL = "http://opencompass.openxlab.space/assets/MathLB.json" # CONSTANTS-CITATION CITATION_BUTTON_TEXT = r"""\ @inproceedings{duan2024vlmevalkit, title={Vlmevalkit: An open-source toolkit for evaluating large multi-modality models}, author={Duan, Haodong and Yang, Junming and Qiao, Yuxuan and Fang, Xinyu and Chen, Lin and Liu, Yuan and Dong, Xiaoyi and Zang, Yuhang and Zhang, Pan and Wang, Jiaqi and others}, booktitle={Proceedings of the 32nd ACM International Conference on Multimedia}, pages={11198--11201}, year={2024} } """ CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results" # CONSTANTS-TEXT LEADERBORAD_INTRODUCTION = """# Open LMM Reasoning Leaderboard This leaderboard aims at providing a comprehensive evaluation of the reasoning capabilities of LMMs. Currently, it is a collection of evaluation results on multiple multi-modal mathematical reasoning benchmarks. We obtain all evaluation results based on the [VLMEvalKit](https://github.com/open-compass/VLMEvalKit), with the corresponding dataset names: 1. MathVista_MINI: The Test Mini split of MathVista dataset, around 1000 samples. 2. MathVision: The Full test set of MathVision, around 3000 samples. 3. MathVerse_MINI_Vision_Only: The Test Mini split of MathVerse, using the "Vision Only" mode, around 700 samples. 4. DynaMath: The Full test set of DynaMath, around 5000 samples (501 original questions x 10 variants). To suggest new models or benchmarks for this leaderboard, please contact duanhaodong@pjlab.org.cn. """ # CONSTANTS-FIELDS DATASETS_ALL = ['MathVista', 'MathVision', 'MathVerse', 'DynaMath', 'MMMath', 'OlympiadBench'] DATASETS_ESS = ['MathVista', 'MathVision', 'MathVerse', 'DynaMath'] META_FIELDS = ['Method', 'Param (B)', 'Language Model', 'Vision Model', 'OpenSource', 'Verified', 'Org'] MODEL_SIZE = ['<4B', '4B-10B', '10B-20B', '20B-40B', '>40B', 'Unknown'] MODEL_TYPE = ['OpenSource', 'API']