import copy as cp import json from collections import defaultdict from urllib.request import urlopen import gradio as gr import numpy as np import pandas as pd from meta_data import META_FIELDS, URL, DATASETS_ALL, DATASETS_ESS def listinstr(lst, s): assert isinstance(lst, list) for item in lst: if item in s: return True return False def upper_key(k): if k == 'ocr': return 'OCR' elif '_' in k: k = k.split('_') k = [x[0].upper() + x[1:] for x in k] k = ' '.join(k) return k else: return k def load_results(): data = json.loads(urlopen(URL).read()) return data def nth_large(val, vals): return sum([1 for v in vals if v > val]) + 1 def model_size_flag(sz, FIELDS): if pd.isna(sz) and 'Unknown' in FIELDS: return True if pd.isna(sz): return False sz = int(sz) if '<4B' in FIELDS and sz < 4: return True if '4B-10B' in FIELDS and sz >= 4 and sz < 10: return True if '10B-20B' in FIELDS and sz >= 10 and sz < 20: return True if '20B-40B' in FIELDS and sz >= 20 and sz < 40: return True if '>40B' in FIELDS and sz >= 40: return True return False def model_type_flag(line, FIELDS): if 'OpenSource' in FIELDS and line['OpenSource'] == 'Yes': return True if 'API' in FIELDS and line['OpenSource'] == 'No': return True return False def BUILD_L1_DF(results): check_box = {} check_box['essential'] = ['Method', 'Org', 'Param (B)', 'Language Model', 'Vision Model'] # revise there to set default dataset check_box['required'] = ['Overall'] + DATASETS_ESS check_box['all'] = ['Overall'] + DATASETS_ALL type_map = defaultdict(lambda: 'number') type_map['Method'] = 'html' type_map['Language Model'] = type_map['Vision Model'] = type_map['Org'] = 'html' type_map['OpenSource'] = type_map['Verified'] = 'str' check_box['type_map'] = type_map df = generate_table(results) return df, check_box def BUILD_L2_DF(results, dataset): res = defaultdict(list) sub = [v for v in results.values() if dataset in v] assert len(sub), dataset fields = list(sub[0][dataset].keys()) non_overall_fields = [x for x in fields if 'Overall' not in x] overall_fields = [x for x in fields if 'Overall' in x] for m in results: item = results[m] if dataset not in item: continue for k in META_FIELDS: if k == 'Param (B)': param = item['META']['Parameters'] res[k].append(float(param.replace('B', '')) if param != '' else None) elif k == 'Method': name, url = item['META']['Method'] res[k].append(f'{name}') else: s = item['META'][k].replace('\n', '
') s = s.replace(' & ', '
') res[k].append(s) for d in overall_fields: res[d].append(float(item[dataset][d])) for d in non_overall_fields: res[d].append(float(item[dataset][d])) df = pd.DataFrame(res) all_fields = overall_fields + non_overall_fields # Use the first 5 non-overall fields as required fields required_fields = overall_fields if len(overall_fields) else non_overall_fields[:5] df = df.sort_values('Overall') df = df.iloc[::-1] check_box = {} check_box['essential'] = ['Method', 'Org', 'Param (B)', 'Language Model', 'Vision Model'] check_box['required'] = required_fields check_box['all'] = all_fields type_map = defaultdict(lambda: 'number') type_map['Method'] = 'html' type_map['Language Model'] = type_map['Vision Model'] = type_map['Org'] = 'html' type_map['OpenSource'] = type_map['Verified'] = 'str' check_box['type_map'] = type_map return df, check_box def generate_table(results): res = defaultdict(list) for i, m in enumerate(results): item = results[m] avg = 0 for k in META_FIELDS: if k == 'Param (B)': param = item['META']['Parameters'] res[k].append(float(param.replace('B', '')) if param != '' else None) elif k == 'Method': name, url = item['META']['Method'] res[k].append(f'{name}') else: s = item['META'][k].replace('\n', '
') s = s.replace(' & ', '
') res[k].append(s) for d in DATASETS_ALL: key_name = 'Overall' if d in item: val = float(item[d][key_name]) val = float(f'{val:.1f}') res[d].append(val) else: res[d].append(None) if d in DATASETS_ESS: if d in item and avg is not None: avg += res[d][-1] else: avg = None if avg is not None: avg = float(f'{avg / len(DATASETS_ESS):.1f}') res['Overall'].append(avg) df = pd.DataFrame(res) overall_isna = df[pd.isna(df['Overall'])] overall_notna = df[~pd.isna(df['Overall'])] overall_notna = overall_notna.sort_values('Overall') overall_notna = overall_notna.iloc[::-1] overall_isna = overall_isna.sort_values('MathVista') overall_isna = overall_isna.iloc[::-1] df = pd.concat([overall_notna, overall_isna]) return df