import abc import gradio as gr from gen_table import * from meta_data import * head_style = """ """ def math_main_tab(results): _, check_box = BUILD_L1_DF(results) table = generate_table(results) table['Rank'] = list(range(1, len(table) + 1)) type_map = check_box['type_map'] type_map['Rank'] = 'number' checkbox_group = gr.CheckboxGroup(choices=check_box['all'], value=check_box['required'], label='Evaluation Dimension') headers = ['Rank'] + check_box['essential'] + checkbox_group.value with gr.Row(): model_name = gr.Textbox(value='Input the Model Name (fuzzy)', label='Model Name') model_size = gr.CheckboxGroup(choices=MODEL_SIZE, value=MODEL_SIZE, label='Model Size') model_type = gr.CheckboxGroup(choices=MODEL_TYPE, value=MODEL_TYPE, label='Model Type') data_component = gr.components.DataFrame(value=table[headers], datatype=[type_map[x] for x in headers]) def filter_df(fields, model_name, model_size, model_type): results = load_results()['results'] headers = ['Rank'] + check_box['essential'] + fields df = generate_table(results) df['flag'] = [model_size_flag(x, model_size) for x in df['Param (B)']] df = df[df['flag']] df.pop('flag') if len(df): df['flag'] = [model_type_flag(df.iloc[i], model_type) for i in range(len(df))] df = df[df['flag']] df.pop('flag') df['Rank'] = list(range(1, len(df) + 1)) default_val = 'Input the Model Name (fuzzy)' if model_name != default_val: method_names = [x.split('')[0].split('>')[-1].lower() for x in df['Method']] flag = [model_name.lower() in name for name in method_names] df['TEMP'] = flag df = df[df['TEMP'] == True] df.pop('TEMP') comp = gr.components.DataFrame(value=df[headers], datatype=[type_map[x] for x in headers]) return comp for cbox in [checkbox_group, model_size, model_type]: cbox.change(fn=filter_df, inputs=[checkbox_group, model_name, model_size, model_type], outputs=data_component) model_name.submit(fn=filter_df, inputs=[checkbox_group, model_name, model_size, model_type], outputs=data_component) def dataset_tab(results, struct, dataset): s = struct s.table, s.check_box = BUILD_L2_DF(results, dataset) s.type_map = s.check_box['type_map'] s.type_map['Rank'] = 'number' s.checkbox_group = gr.CheckboxGroup(choices=s.check_box['all'], value=s.check_box['required'], label=f'{dataset} CheckBoxes') s.headers = ['Rank'] + s.check_box['essential'] + s.checkbox_group.value s.table['Rank'] = list(range(1, len(s.table) + 1)) with gr.Row(): s.model_name = gr.Textbox(value='Input the Model Name (fuzzy)', label='Model Name') s.model_size = gr.CheckboxGroup(choices=MODEL_SIZE, value=MODEL_SIZE, label='Model Size') s.model_type = gr.CheckboxGroup(choices=MODEL_TYPE, value=MODEL_TYPE, label='Model Type') s.data_component = gr.components.DataFrame(value=s.table[s.headers], datatype=[s.type_map[x] for x in s.headers]) s.dataset = gr.Textbox(value=dataset, label=dataset, visible=False) def filter_df_l2(dataset_name, fields, model_name, model_size, model_type): results = load_results()['results'] s = structs[DATASETS.index(dataset_name)] headers = ['Rank'] + s.check_box['essential'] + fields df = cp.deepcopy(s.table) df['flag'] = [model_size_flag(x, model_size) for x in df['Param (B)']] df = df[df['flag']] df.pop('flag') if len(df): df['flag'] = [model_type_flag(df.iloc[i], model_type) for i in range(len(df))] df = df[df['flag']] df.pop('flag') df['Rank'] = list(range(1, len(df) + 1)) default_val = 'Input the Model Name (fuzzy)' if model_name != default_val: method_names = [x.split('')[0].split('>')[-1].lower() for x in df['Method']] flag = [model_name.lower() in name for name in method_names] df['TEMP'] = flag df = df[df['TEMP'] == True] df.pop('TEMP') comp = gr.components.DataFrame(value=df[headers], datatype=[s.type_map[x] for x in headers]) return comp for cbox in [s.checkbox_group, s.model_size, s.model_type]: cbox.change( fn=filter_df_l2, inputs=[s.dataset, s.checkbox_group, s.model_name, s.model_size, s.model_type], outputs=s.data_component) s.model_name.submit( fn=filter_df_l2, inputs=[s.dataset, s.checkbox_group, s.model_name, s.model_size, s.model_type], outputs=s.data_component) with gr.Blocks(title="Math Leaderboard", head=head_style) as demo: results = load_results()['results'] N_MODEL = len(results) DATASETS = [] for m in results: DATASETS.extend(results[m].keys()) DATASETS = [d for d in set(DATASETS) if d != 'META'] N_DATA = len(DATASETS) structs = [abc.abstractproperty() for _ in range(N_DATA)] gr.Markdown(LEADERBORAD_INTRODUCTION) with gr.Tabs(elem_classes='tab-buttons') as tabs: with gr.TabItem('🏅 LMM Math Leaderboard', elem_id='main', id=0): math_main_tab(results) for i, dataset in enumerate(DATASETS): tab_name_map = { 'MathVista': 'MathVista (Test Mini)', 'MathVerse': 'MathVerse (Vision Only)', } with gr.TabItem( f'📊 {dataset if dataset not in tab_name_map else tab_name_map[dataset]}', elem_id=dataset, id=i + 2): dataset_tab(results, structs[i], dataset) with gr.Row(): with gr.Accordion('Citation', open=False): citation_button = gr.Textbox( value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, elem_id='citation-button') if __name__ == '__main__': demo.launch(server_name='0.0.0.0')