kennymckormick
fix
a0e2ce8
raw
history blame
6.9 kB
import copy as cp
import json
from collections import defaultdict
from urllib.request import urlopen
import gradio as gr
import numpy as np
import pandas as pd
from meta_data import DEFAULT_BENCH, META_FIELDS, URL
def listinstr(lst, s):
assert isinstance(lst, list)
for item in lst:
if item in s:
return True
return False
def load_results():
data = json.loads(urlopen(URL).read())
return data
def nth_large(val, vals):
return sum([1 for v in vals if v > val]) + 1
def format_timestamp(timestamp):
date = timestamp[:2] + '.' + timestamp[2:4] + '.' + timestamp[4:6]
time = timestamp[6:8] + ':' + timestamp[8:10] + ':' + timestamp[10:12]
return date + ' ' + time
def model_size_flag(sz, FIELDS):
if pd.isna(sz) and 'Unknown' in FIELDS:
return True
if pd.isna(sz):
return False
if '<4B' in FIELDS and sz < 4:
return True
if '4B-10B' in FIELDS and sz >= 4 and sz < 10:
return True
if '10B-20B' in FIELDS and sz >= 10 and sz < 20:
return True
if '20B-40B' in FIELDS and sz >= 20 and sz < 40:
return True
if '>40B' in FIELDS and sz >= 40:
return True
return False
def model_type_flag(line, FIELDS):
if 'OpenSource' in FIELDS and line['OpenSource'] == 'Yes':
return True
if 'API' in FIELDS and line['OpenSource'] == 'No' and line['Verified'] == 'Yes':
return True
if 'Proprietary' in FIELDS and line['OpenSource'] == 'No' and line['Verified'] == 'No':
return True
return False
def BUILD_L1_DF(results, fields):
check_box = {}
check_box['essential'] = ['Method', 'Param (B)', 'Language Model', 'Vision Model']
# revise there to set default dataset
check_box['required'] = ['Avg Score', 'Avg Rank'] + DEFAULT_BENCH
check_box['avg'] = ['Avg Score', 'Avg Rank']
check_box['all'] = check_box['avg'] + fields
type_map = defaultdict(lambda: 'number')
type_map['Method'] = 'html'
type_map['Language Model'] = type_map['Vision Model'] = type_map['OpenSource'] = type_map['Verified'] = 'str'
check_box['type_map'] = type_map
df = generate_table(results, fields)
return df, check_box
def BUILD_L2_DF(results, dataset):
res = defaultdict(list)
sub = [v for v in results.values() if dataset in v]
assert len(sub)
fields = list(sub[dataset].keys())
non_overall_fields = [x for x in fields if 'Overall' not in x]
overall_fields = [x for x in fields if 'Overall' in x]
if dataset == 'MME':
non_overall_fields = [x for x in non_overall_fields if not listinstr(['Perception', 'Cognition'], x)]
overall_fields = overall_fields + ['Perception', 'Cognition']
if dataset == 'OCRBench':
non_overall_fields = [x for x in non_overall_fields if not listinstr(['Final Score'], x)]
overall_fields = ['Final Score']
for m in results:
item = results[m]
if dataset not in item:
continue
meta = item['META']
for k in META_FIELDS:
if k == 'Param (B)':
param = meta['Parameters']
res[k].append(float(param.replace('B', '')) if param != '' else None)
elif k == 'Method':
name, url = meta['Method']
res[k].append(f'<a href="{url}">{name}</a>')
else:
res[k].append(meta[k])
fields = [x for x in fields]
for d in non_overall_fields:
res[d].append(item[dataset][d])
for d in overall_fields:
res[d].append(item[dataset][d])
df = pd.DataFrame(res)
all_fields = overall_fields + non_overall_fields
# Use the first 5 non-overall fields as required fields
required_fields = overall_fields if len(overall_fields) else non_overall_fields[:5]
if dataset == 'OCRBench':
df = df.sort_values('Final Score')
elif dataset == 'COCO_VAL':
df = df.sort_values('CIDEr')
else:
df = df.sort_values('Overall')
df = df.iloc[::-1]
check_box = {}
check_box['essential'] = ['Method', 'Param (B)', 'Language Model', 'Vision Model']
check_box['required'] = required_fields
check_box['all'] = all_fields
type_map = defaultdict(lambda: 'number')
type_map['Method'] = 'html'
type_map['Language Model'] = type_map['Vision Model'] = type_map['OpenSource'] = type_map['Verified'] = 'str'
check_box['type_map'] = type_map
return df, check_box
def generate_table(results, fields):
def get_mmbench_v11(item):
assert 'MMBench_TEST_CN_V11' in item and 'MMBench_TEST_EN_V11' in item
val = (item['MMBench_TEST_CN_V11']['Overall'] + item['MMBench_TEST_EN_V11']['Overall']) / 2
val = float(f'{val:.1f}')
return val
res = defaultdict(list)
for i, m in enumerate(results):
item = results[m]
meta = item['META']
for k in META_FIELDS:
if k == 'Param (B)':
param = meta['Parameters']
res[k].append(float(param.replace('B', '')) if param != '' else None)
elif k == 'Method':
name, url = meta['Method']
res[k].append(f'<a href="{url}">{name}</a>')
res['name'].append(name)
else:
res[k].append(meta[k])
scores, ranks = [], []
for d in fields:
key_name = 'Overall' if d != 'OCRBench' else 'Final Score'
# Every Model should have MMBench_V11 results
if d == 'MMBench_V11':
val = get_mmbench_v11(item)
res[d].append(val)
scores.append(val)
ranks.append(nth_large(val, [get_mmbench_v11(x) for x in results.values()]))
elif d in item:
res[d].append(item[d][key_name])
if d == 'MME':
scores.append(item[d][key_name] / 28)
elif d == 'OCRBench':
scores.append(item[d][key_name] / 10)
else:
scores.append(item[d][key_name])
ranks.append(nth_large(item[d][key_name], [x[d][key_name] for x in results.values() if d in x]))
else:
res[d].append(None)
scores.append(None)
ranks.append(None)
res['Avg Score'].append(round(np.mean(scores), 1) if None not in scores else None)
res['Avg Rank'].append(round(np.mean(ranks), 2) if None not in ranks else None)
df = pd.DataFrame(res)
valid, missing = df[~pd.isna(df['Avg Score'])], df[pd.isna(df['Avg Score'])]
valid = valid.sort_values('Avg Score')
valid = valid.iloc[::-1]
if len(fields):
missing = missing.sort_values('MMBench_V11' if 'MMBench_V11' in fields else fields[0])
missing = missing.iloc[::-1]
df = pd.concat([valid, missing])
return df