File size: 7,054 Bytes
243897a
 
 
 
 
 
 
 
 
 
5ab1442
 
243897a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e5bfdb
 
 
 
 
 
 
243897a
 
 
 
 
8e5bfdb
 
 
243897a
 
 
 
 
 
 
 
 
 
 
 
 
 
8e5bfdb
 
 
 
 
 
 
243897a
 
 
 
 
8e5bfdb
 
 
243897a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import abc
import gradio as gr
from lb_info import *

with gr.Blocks() as demo:
    struct = load_results()
    timestamp = struct['time']
    EVAL_TIME = format_timestamp(timestamp)
    results = struct['results']
    N_MODEL = len(results)
    N_DATA = len(results['Video-LLaVA-7B']) - 1
    DATASETS = list(results['Video-LLaVA-7B'])
    DATASETS.remove('META')
    print(DATASETS)

    gr.Markdown(LEADERBORAD_INTRODUCTION.format(N_MODEL, N_DATA, EVAL_TIME))
    structs = [abc.abstractproperty() for _ in range(N_DATA)]

    with gr.Tabs(elem_classes='tab-buttons') as tabs:
        with gr.TabItem('πŸ… OpenVLM Video Leaderboard', elem_id='main', id=0):
            gr.Markdown(LEADERBOARD_MD['MAIN'])
            table, check_box = BUILD_L1_DF(results, MAIN_FIELDS)
            type_map = check_box['type_map']
            checkbox_group = gr.CheckboxGroup(
                choices=check_box['all'],
                value=check_box['required'],
                label="Evaluation Dimension",
                interactive=True,
            )
            headers = check_box['essential'] + checkbox_group.value
            with gr.Row():
                model_size = gr.CheckboxGroup(
                    choices=MODEL_SIZE, 
                    value=MODEL_SIZE, 
                    label='Model Size',
                    interactive=True
                )
                model_type = gr.CheckboxGroup(
                    choices=MODEL_TYPE, 
                    value=MODEL_TYPE, 
                    label='Model Type',
                    interactive=True
                )
            data_component = gr.components.DataFrame(
                value=table[headers], 
                type="pandas", 
                datatype=[type_map[x] for x in headers],
                interactive=False, 
                visible=True)
            
            def filter_df(fields, model_size, model_type):
                headers = check_box['essential'] + fields
                df = cp.deepcopy(table)
                df['flag'] = [model_size_flag(x, model_size) for x in df['Parameters (B)']]
                df = df[df['flag']]
                df.pop('flag')
                if len(df):
                    print(model_type)
                    df['flag'] = [model_type_flag(df.iloc[i], model_type) for i in range(len(df))]
                    df = df[df['flag']]
                    df.pop('flag')
                
                comp = gr.components.DataFrame(
                    value=df[headers], 
                    type="pandas", 
                    datatype=[type_map[x] for x in headers],
                    interactive=False, 
                    visible=True)
                return comp

            for cbox in [checkbox_group, model_size, model_type]:
                cbox.change(fn=filter_df, inputs=[checkbox_group, model_size, model_type], outputs=data_component)

        with gr.TabItem('πŸ” About', elem_id='about', id=1):
            gr.Markdown(urlopen(VLMEVALKIT_README).read().decode())

        for i, dataset in enumerate(DATASETS):
            with gr.TabItem(f'πŸ“Š {dataset} Leaderboard', elem_id=dataset, id=i + 2):
                if dataset in LEADERBOARD_MD:
                    gr.Markdown(LEADERBOARD_MD[dataset])

                s = structs[i]
                s.table, s.check_box = BUILD_L2_DF(results, dataset)
                s.type_map = s.check_box['type_map']
                s.checkbox_group = gr.CheckboxGroup(
                    choices=s.check_box['all'],
                    value=s.check_box['required'],
                    label=f"{dataset} CheckBoxes",
                    interactive=True,
                )
                s.headers = s.check_box['essential'] + s.checkbox_group.value
                with gr.Row():
                    s.model_size = gr.CheckboxGroup(
                        choices=MODEL_SIZE, 
                        value=MODEL_SIZE, 
                        label='Model Size',
                        interactive=True
                    )
                    s.model_type = gr.CheckboxGroup(
                        choices=MODEL_TYPE, 
                        value=MODEL_TYPE, 
                        label='Model Type',
                        interactive=True
                    )
                # Adjust column width if dataset is MMBench-Video
                if dataset == "MMBench-Video":
                    column_widths = {col: 200 for col in headers}  # Default width
                    column_widths['Method'] = 400  # Adjust Method column width
                else:
                    column_widths = None

                s.data_component = gr.components.DataFrame(
                    value=s.table[s.headers], 
                    type="pandas", 
                    datatype=[s.type_map[x] for x in s.headers],
                    interactive=False, 
                    visible=True,
                    column_widths=column_widths    
                )
                s.dataset = gr.Textbox(value=dataset, label=dataset, visible=False)
                
                def filter_df_l2(dataset_name, fields, model_size, model_type):
                    s = structs[DATASETS.index(dataset_name)]
                    headers = s.check_box['essential'] + fields
                    df = cp.deepcopy(s.table)
                    df['flag'] = [model_size_flag(x, model_size) for x in df['Parameters (B)']]
                    df = df[df['flag']]
                    df.pop('flag')
                    if len(df):
                        df['flag'] = [model_type_flag(df.iloc[i], model_type) for i in range(len(df))]
                        df = df[df['flag']]
                        df.pop('flag')
                    
                    # Adjust column width if dataset is MMBench-Video
                    if dataset_name == "MMBench-Video":
                        column_widths = {col: 200 for col in headers}  # Default width
                        column_widths['Method'] = 400  # Adjust Method column width
                    else:
                        column_widths = None
                    
                    comp = gr.components.DataFrame(
                        value=df[headers], 
                        type="pandas", 
                        datatype=[s.type_map[x] for x in headers],
                        interactive=False, 
                        visible=True,
                        column_widths=column_widths    
                    )
                    return comp

                for cbox in [s.checkbox_group, s.model_size, s.model_type]:
                    cbox.change(fn=filter_df_l2, inputs=[s.dataset, s.checkbox_group, s.model_size, s.model_type], outputs=s.data_component)
        

    with gr.Row():
        with gr.Accordion("Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT, 
                label=CITATION_BUTTON_LABEL,
                elem_id='citation-button')

if __name__ == '__main__':
    demo.launch(server_name='0.0.0.0')