|
import abc |
|
import gradio as gr |
|
from lb_info import * |
|
|
|
with gr.Blocks() as demo: |
|
struct = load_results() |
|
timestamp = struct['time'] |
|
EVAL_TIME = format_timestamp(timestamp) |
|
results = struct['results'] |
|
N_MODEL = len(results) |
|
N_DATA = len(results['Video-LLaVA-7B']) - 1 |
|
DATASETS = list(results['Video-LLaVA-7B']) |
|
DATASETS.remove('META') |
|
print(DATASETS) |
|
|
|
gr.Markdown(LEADERBORAD_INTRODUCTION.format(N_MODEL, N_DATA, EVAL_TIME)) |
|
structs = [abc.abstractproperty() for _ in range(N_DATA)] |
|
|
|
with gr.Tabs(elem_classes='tab-buttons') as tabs: |
|
with gr.TabItem('π
OpenVLM Video Leaderboard', elem_id='main', id=0): |
|
gr.Markdown(LEADERBOARD_MD['MAIN']) |
|
table, check_box = BUILD_L1_DF(results, MAIN_FIELDS) |
|
type_map = check_box['type_map'] |
|
checkbox_group = gr.CheckboxGroup( |
|
choices=check_box['all'], |
|
value=check_box['required'], |
|
label="Evaluation Dimension", |
|
interactive=True, |
|
) |
|
headers = check_box['essential'] + checkbox_group.value |
|
with gr.Row(): |
|
model_size = gr.CheckboxGroup( |
|
choices=MODEL_SIZE, |
|
value=MODEL_SIZE, |
|
label='Model Size', |
|
interactive=True |
|
) |
|
model_type = gr.CheckboxGroup( |
|
choices=MODEL_TYPE, |
|
value=MODEL_TYPE, |
|
label='Model Type', |
|
interactive=True |
|
) |
|
data_component = gr.components.DataFrame( |
|
value=table[headers], |
|
type="pandas", |
|
datatype=[type_map[x] for x in headers], |
|
interactive=False, |
|
visible=True) |
|
|
|
def filter_df(fields, model_size, model_type): |
|
headers = check_box['essential'] + fields |
|
df = cp.deepcopy(table) |
|
df['flag'] = [model_size_flag(x, model_size) for x in df['Parameters (B)']] |
|
df = df[df['flag']] |
|
df.pop('flag') |
|
if len(df): |
|
print(model_type) |
|
df['flag'] = [model_type_flag(df.iloc[i], model_type) for i in range(len(df))] |
|
df = df[df['flag']] |
|
df.pop('flag') |
|
|
|
comp = gr.components.DataFrame( |
|
value=df[headers], |
|
type="pandas", |
|
datatype=[type_map[x] for x in headers], |
|
interactive=False, |
|
visible=True) |
|
return comp |
|
|
|
for cbox in [checkbox_group, model_size, model_type]: |
|
cbox.change(fn=filter_df, inputs=[checkbox_group, model_size, model_type], outputs=data_component) |
|
|
|
with gr.TabItem('π About', elem_id='about', id=1): |
|
gr.Markdown(urlopen(VLMEVALKIT_README).read().decode()) |
|
|
|
for i, dataset in enumerate(DATASETS): |
|
with gr.TabItem(f'π {dataset} Leaderboard', elem_id=dataset, id=i + 2): |
|
if dataset in LEADERBOARD_MD: |
|
gr.Markdown(LEADERBOARD_MD[dataset]) |
|
|
|
s = structs[i] |
|
s.table, s.check_box = BUILD_L2_DF(results, dataset) |
|
s.type_map = s.check_box['type_map'] |
|
s.checkbox_group = gr.CheckboxGroup( |
|
choices=s.check_box['all'], |
|
value=s.check_box['required'], |
|
label=f"{dataset} CheckBoxes", |
|
interactive=True, |
|
) |
|
s.headers = s.check_box['essential'] + s.checkbox_group.value |
|
with gr.Row(): |
|
s.model_size = gr.CheckboxGroup( |
|
choices=MODEL_SIZE, |
|
value=MODEL_SIZE, |
|
label='Model Size', |
|
interactive=True |
|
) |
|
s.model_type = gr.CheckboxGroup( |
|
choices=MODEL_TYPE, |
|
value=MODEL_TYPE, |
|
label='Model Type', |
|
interactive=True |
|
) |
|
|
|
if dataset == "MMBench-Video": |
|
column_widths = {col: 200 for col in headers} |
|
column_widths['Method'] = 400 |
|
else: |
|
column_widths = None |
|
|
|
s.data_component = gr.components.DataFrame( |
|
value=s.table[s.headers], |
|
type="pandas", |
|
datatype=[s.type_map[x] for x in s.headers], |
|
interactive=False, |
|
visible=True, |
|
column_widths=column_widths |
|
) |
|
s.dataset = gr.Textbox(value=dataset, label=dataset, visible=False) |
|
|
|
def filter_df_l2(dataset_name, fields, model_size, model_type): |
|
s = structs[DATASETS.index(dataset_name)] |
|
headers = s.check_box['essential'] + fields |
|
df = cp.deepcopy(s.table) |
|
df['flag'] = [model_size_flag(x, model_size) for x in df['Parameters (B)']] |
|
df = df[df['flag']] |
|
df.pop('flag') |
|
if len(df): |
|
df['flag'] = [model_type_flag(df.iloc[i], model_type) for i in range(len(df))] |
|
df = df[df['flag']] |
|
df.pop('flag') |
|
|
|
|
|
if dataset_name == "MMBench-Video": |
|
column_widths = {col: 200 for col in headers} |
|
column_widths['Method'] = 400 |
|
else: |
|
column_widths = None |
|
|
|
comp = gr.components.DataFrame( |
|
value=df[headers], |
|
type="pandas", |
|
datatype=[s.type_map[x] for x in headers], |
|
interactive=False, |
|
visible=True, |
|
column_widths=column_widths |
|
) |
|
return comp |
|
|
|
for cbox in [s.checkbox_group, s.model_size, s.model_type]: |
|
cbox.change(fn=filter_df_l2, inputs=[s.dataset, s.checkbox_group, s.model_size, s.model_type], outputs=s.data_component) |
|
|
|
|
|
with gr.Row(): |
|
with gr.Accordion("Citation", open=False): |
|
citation_button = gr.Textbox( |
|
value=CITATION_BUTTON_TEXT, |
|
label=CITATION_BUTTON_LABEL, |
|
elem_id='citation-button') |
|
|
|
if __name__ == '__main__': |
|
demo.launch(server_name='0.0.0.0') |