|
import json |
|
import pandas as pd |
|
from collections import defaultdict |
|
import gradio as gr |
|
import copy as cp |
|
import numpy as np |
|
|
|
def listinstr(lst, s): |
|
assert isinstance(lst, list) |
|
for item in lst: |
|
if item in s: |
|
return True |
|
return False |
|
|
|
|
|
|
|
URL = "http://opencompass.openxlab.space/utils/video_leaderboard.json" |
|
VLMEVALKIT_README = 'https://raw.githubusercontent.com/open-compass/VLMEvalKit/main/README.md' |
|
|
|
CITATION_BUTTON_TEXT = r"""@misc{duan2024vlmevalkitopensourcetoolkitevaluating, |
|
title={VLMEvalKit: An Open-Source Toolkit for Evaluating Large Multi-Modality Models}, |
|
author={Haodong Duan and Junming Yang and Yuxuan Qiao and Xinyu Fang and Lin Chen and Yuan Liu and Amit Agarwal and Zhe Chen and Mo Li and Yubo Ma and Hailong Sun and Xiangyu Zhao and Junbo Cui and Xiaoyi Dong and Yuhang Zang and Pan Zhang and Jiaqi Wang and Dahua Lin and Kai Chen}, |
|
year={2024}, |
|
eprint={2407.11691}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV}, |
|
url={https://arxiv.org/abs/2407.11691}, |
|
}""" |
|
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results" |
|
|
|
LEADERBORAD_INTRODUCTION = """# OpenVLM Video Leaderboard |
|
### Welcome to the OpenVLM Video Leaderboard! On this leaderboard we share the evaluation results of VLMs on the video understanding benchmark obtained by the OpenSource Framework [**VLMEvalKit**](https://github.com/open-compass/VLMEvalKit) π |
|
### Currently, OpenVLM Video Leaderboard covers {} different VLMs (including GPT-4o, Gemini-1.5, LLaVA-OneVision, etc.) and {} different video understanding benchmarks. |
|
|
|
This leaderboard was last updated: {}. |
|
""" |
|
|
|
META_FIELDS = ['Method', 'Parameters (B)', 'Language Model', 'Vision Model', 'OpenSource', 'Verified', 'Frames'] |
|
MAIN_FIELDS = ['MVBench', 'Video-MME (w/o subs)', 'MMBench-Video', 'TempCompass', 'MLVU'] |
|
MODEL_SIZE = ['<10B', '10B-20B', '20B-40B', '>40B', 'Unknown'] |
|
MODEL_TYPE = ['API', 'OpenSource'] |
|
|
|
|
|
LEADERBOARD_MD = {} |
|
|
|
LEADERBOARD_MD['MAIN'] = """ |
|
## Main Evaluation Results |
|
|
|
- Avg Score: The average score on all video understanding Benchmarks (normalized to 0 - 100, the higher the better). |
|
- Avg Rank: The average rank on all video understanding Benchmarks (the lower the better). |
|
- The overall evaluation results on 5 video understanding benchmarks, sorted by the ascending order of Avg Rank. |
|
- Tip: The total score of MLVU is calculated as a weighted sum of M-Avg and G-Avg, with weights based on the proportion of the number of questions in each category relative to the total. The maximum possible score is 100. |
|
""" |
|
|
|
LEADERBOARD_MD['Video-MME (w/o subs)'] = """ |
|
## Video-MME (w/o subs) Evaluation Results |
|
|
|
- We give the total scores for the three video lengths (short, medium and long), as well as the total scores for each task type. |
|
""" |
|
|
|
LEADERBOARD_MD['MLVU'] = """ |
|
## MLVU Evaluation Results |
|
|
|
- The ranking here is determined by sorting the M-Avg scores in descending order. |
|
- The number of evaluation questions used here is consistent with the official Hugging Face benchmark. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from urllib.request import urlopen |
|
|
|
|
|
|
|
|
|
|
|
def load_results(): |
|
data = json.loads(urlopen(URL).read()) |
|
return data |
|
|
|
def nth_large(val, vals): |
|
return sum([1 for v in vals if v > val]) + 1 |
|
|
|
def format_timestamp(timestamp): |
|
return timestamp[:2] + '.' + timestamp[2:4] + '.' + timestamp[4:6] + ' ' + timestamp[6:8] + ':' + timestamp[8:10] + ':' + timestamp[10:12] |
|
|
|
def model_size_flag(sz, FIELDS): |
|
if pd.isna(sz) or sz == 'N/A': |
|
if 'Unknown' in FIELDS: |
|
return True |
|
else: |
|
return False |
|
sz = float(sz.replace('B','').replace('(LLM)','')) |
|
if '<10B' in FIELDS and sz < 10: |
|
return True |
|
if '10B-20B' in FIELDS and sz >= 10 and sz < 20: |
|
return True |
|
if '20B-40B' in FIELDS and sz >= 20 and sz < 40: |
|
return True |
|
if '>40B' in FIELDS and sz >= 40: |
|
return True |
|
return False |
|
|
|
def model_type_flag(line, FIELDS): |
|
if 'OpenSource' in FIELDS and line['OpenSource'] == 'Yes': |
|
return True |
|
if 'API' in FIELDS and line['OpenSource'] == 'No': |
|
return True |
|
return False |
|
|
|
def BUILD_L1_DF(results, fields): |
|
res = defaultdict(list) |
|
for i, m in enumerate(results): |
|
item = results[m] |
|
meta = item['META'] |
|
skip_model_in_main = False |
|
for main_dataset in MAIN_FIELDS: |
|
|
|
if main_dataset not in item.keys() or item[main_dataset] == {}: |
|
skip_model_in_main = True |
|
break |
|
if skip_model_in_main: |
|
print(f'skip {meta}') |
|
continue |
|
for k in META_FIELDS: |
|
if k == 'Parameters (B)': |
|
param = meta['Parameters'] |
|
res[k].append(param.replace('B', '') if param != '' else None) |
|
|
|
elif k == 'Method': |
|
name, url = meta['Method'] |
|
res[k].append(f'<a href="{url}">{name}</a>') |
|
else: |
|
res[k].append(meta[k]) |
|
scores, ranks = [], [] |
|
for d in fields: |
|
|
|
|
|
|
|
|
|
if d == 'MLVU': |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
res[d].append(item[d]['M-Avg'] * 0.84 + item[d]['G-Avg'] * 10 * 0.16) |
|
elif d == 'TempCompass': |
|
res[d].append(item[d]['overall']) |
|
else: |
|
res[d].append(item[d]['Overall']) |
|
|
|
if d == 'MMBench-Video': |
|
scores.append(item[d]['Overall'] / 3 * 100) |
|
elif d == 'TempCompass': |
|
scores.append(item[d]['overall']) |
|
elif d == 'MLVU': |
|
scores.append(item[d]['M-Avg'] * 0.84 + item[d]['G-Avg'] * 10 * 0.16) |
|
else: |
|
scores.append(item[d]['Overall']) |
|
|
|
if d == 'MLVU': |
|
ranks.append(nth_large( |
|
item[d]['M-Avg'] * 0.84 + item[d]['G-Avg'] * 10 * 0.16, |
|
[x[d]['M-Avg'] * 0.84 + x[d]['G-Avg'] * 10 * 0.16 for x in results.values() if d in x and 'M-Avg' in x[d] and 'G-Avg' in x[d]] |
|
)) |
|
elif d == 'TempCompass': |
|
ranks.append(nth_large(item[d]['overall'], [x[d]['overall'] for x in results.values() if d in x and 'overall' in x[d]])) |
|
else: |
|
ranks.append(nth_large(item[d]['Overall'], [x[d]['Overall'] for x in results.values() if d in x and 'Overall' in x[d]])) |
|
res['Avg Score'].append(round(np.mean(scores), 1)) |
|
res['Avg Rank'].append(round(np.mean(ranks), 2)) |
|
|
|
df = pd.DataFrame(res) |
|
df = df.sort_values('Avg Rank') |
|
|
|
check_box = {} |
|
check_box['essential'] = ['Method', 'Parameters (B)', 'Language Model', 'Vision Model', 'Frames'] |
|
check_box['required'] = ['Avg Score', 'Avg Rank'] |
|
check_box['all'] = check_box['required'] + ['OpenSource', 'Verified'] + fields |
|
type_map = defaultdict(lambda: 'number') |
|
type_map['Method'] = 'html' |
|
type_map['Language Model'] = type_map['Vision Model'] = type_map['OpenSource'] = type_map['Verified'] = type_map['Frames'] = 'str' |
|
check_box['type_map'] = type_map |
|
return df, check_box |
|
|
|
def BUILD_L2_DF(results, dataset): |
|
res = defaultdict(list) |
|
fields = list(list(results.values())[0][dataset].keys()) |
|
non_overall_fields = [x for x in fields if 'Overall' not in x and 'Avg' not in x and 'overall' not in x] |
|
overall_fields = [x for x in fields if 'Overall' in x or 'Avg' in x or 'overall' in x] |
|
|
|
for m in results: |
|
item = results[m] |
|
meta = item['META'] |
|
if dataset not in item or item[dataset] == {}: |
|
continue |
|
for k in META_FIELDS: |
|
if k == 'Parameters (B)': |
|
param = meta['Parameters'] |
|
res[k].append(param.replace('B', '') if param != '' else None) |
|
|
|
elif k == 'Method': |
|
name, url = meta['Method'] |
|
res[k].append(f'<a href="{url}">{name}</a>') |
|
else: |
|
res[k].append(meta[k]) |
|
fields = [x for x in fields] |
|
|
|
for d in non_overall_fields: |
|
res[d].append(item[dataset][d]) |
|
for d in overall_fields: |
|
res[d].append(item[dataset][d]) |
|
|
|
df = pd.DataFrame(res) |
|
if dataset == 'MLVU': |
|
df = df.sort_values('M-Avg') |
|
elif dataset == 'TempCompass': |
|
df = df.sort_values('overall') |
|
else: |
|
df = df.sort_values('Overall') |
|
df = df.iloc[::-1] |
|
|
|
check_box = {} |
|
check_box['essential'] = ['Method', 'Parameters (B)', 'Language Model', 'Vision Model', 'Frames'] |
|
if dataset == 'MMBench-Video': |
|
check_box['required'] = overall_fields + ['Perception', 'Reasoning'] |
|
elif 'Video-MME' in dataset: |
|
check_box['required'] = overall_fields + ['short', 'medium', 'long'] |
|
else: |
|
check_box['required'] = overall_fields |
|
check_box['all'] = non_overall_fields + overall_fields |
|
type_map = defaultdict(lambda: 'number') |
|
type_map['Method'] = 'html' |
|
type_map['Language Model'] = type_map['Vision Model'] = type_map['OpenSource'] = type_map['Verified'] = type_map['Frames'] ='str' |
|
check_box['type_map'] = type_map |
|
|
|
return df, check_box |