import json import pandas as pd from collections import defaultdict import gradio as gr import copy as cp import numpy as np def listinstr(lst, s): assert isinstance(lst, list) for item in lst: if item in s: return True return False # CONSTANTS-URL # RESULT_FILE = '../video_leaderboard.json' URL = "http://opencompass.openxlab.space/utils/video_leaderboard.json" VLMEVALKIT_README = 'https://raw.githubusercontent.com/open-compass/VLMEvalKit/main/README.md' # CONSTANTS-CITATION CITATION_BUTTON_TEXT = r"""@misc{duan2024vlmevalkitopensourcetoolkitevaluating, title={VLMEvalKit: An Open-Source Toolkit for Evaluating Large Multi-Modality Models}, author={Haodong Duan and Junming Yang and Yuxuan Qiao and Xinyu Fang and Lin Chen and Yuan Liu and Amit Agarwal and Zhe Chen and Mo Li and Yubo Ma and Hailong Sun and Xiangyu Zhao and Junbo Cui and Xiaoyi Dong and Yuhang Zang and Pan Zhang and Jiaqi Wang and Dahua Lin and Kai Chen}, year={2024}, eprint={2407.11691}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2407.11691}, }""" CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results" # CONSTANTS-TEXT LEADERBORAD_INTRODUCTION = """# OpenVLM Video Leaderboard ### Welcome to the OpenVLM Video Leaderboard! On this leaderboard we share the evaluation results of VLMs on the video understanding benchmark obtained by the OpenSource Framework [**VLMEvalKit**](https://github.com/open-compass/VLMEvalKit) 🏆 ### Currently, OpenVLM Video Leaderboard covers {} different VLMs (including GPT-4o, Gemini-1.5, LLaVA-OneVision, etc.) and {} different video understanding benchmarks. This leaderboard was last updated: {}. """ # CONSTANTS-FIELDS META_FIELDS = ['Method', 'Parameters (B)', 'Language Model', 'Vision Model', 'OpenSource', 'Verified', 'Frames'] MAIN_FIELDS = ['MVBench', 'Video-MME (w/o subs)', 'MMBench-Video', 'TempCompass', 'MLVU'] MODEL_SIZE = ['<10B', '10B-20B', '20B-40B', '>40B', 'Unknown'] MODEL_TYPE = ['API', 'OpenSource'] # The README file for each benchmark LEADERBOARD_MD = {} LEADERBOARD_MD['MAIN'] = """ ## Main Evaluation Results - Avg Score: The average score on all video understanding Benchmarks (normalized to 0 - 100, the higher the better). - Avg Rank: The average rank on all video understanding Benchmarks (the lower the better). - The overall evaluation results on 5 video understanding benchmarks, sorted by the ascending order of Avg Rank. - Tip: The total score of MLVU is calculated as a weighted sum of M-Avg and G-Avg, with weights based on the proportion of the number of questions in each category relative to the total. The maximum possible score is 100. """ LEADERBOARD_MD['Video-MME (w/o subs)'] = """ ## Video-MME (w/o subs) Evaluation Results - We give the total scores for the three video lengths (short, medium and long), as well as the total scores for each task type. """ LEADERBOARD_MD['MLVU'] = """ ## MLVU Evaluation Results - The ranking here is determined by sorting the M-Avg scores in descending order. - The number of evaluation questions used here is consistent with the official Hugging Face benchmark. """ # LEADERBOARD_MD['MVBench'] = """ # ## MVBench Evaluation Results # """ # LEADERBOARD_MD['MMBench-Video'] = """ # ## MMBench-Video Evaluation Results # """ from urllib.request import urlopen # def load_results(): # with open(RESULT_FILE, 'r', encoding='utf-8') as file: # data = json.load(file) # return data def load_results(): data = json.loads(urlopen(URL).read()) return data def nth_large(val, vals): return sum([1 for v in vals if v > val]) + 1 def format_timestamp(timestamp): return timestamp[:2] + '.' + timestamp[2:4] + '.' + timestamp[4:6] + ' ' + timestamp[6:8] + ':' + timestamp[8:10] + ':' + timestamp[10:12] def model_size_flag(sz, FIELDS): if pd.isna(sz) or sz == 'N/A': if 'Unknown' in FIELDS: return True else: return False sz = float(sz.replace('B','').replace('(LLM)','')) if '<10B' in FIELDS and sz < 10: return True if '10B-20B' in FIELDS and sz >= 10 and sz < 20: return True if '20B-40B' in FIELDS and sz >= 20 and sz < 40: return True if '>40B' in FIELDS and sz >= 40: return True return False def model_type_flag(line, FIELDS): if 'OpenSource' in FIELDS and line['OpenSource'] == 'Yes': return True if 'API' in FIELDS and line['OpenSource'] == 'No': return True return False def BUILD_L1_DF(results, fields): res = defaultdict(list) for i, m in enumerate(results): item = results[m] meta = item['META'] skip_model_in_main = False for main_dataset in MAIN_FIELDS: # judge dict is empty if main_dataset not in item.keys() or item[main_dataset] == {}: skip_model_in_main = True break if skip_model_in_main: print(f'skip {meta}') continue for k in META_FIELDS: if k == 'Parameters (B)': param = meta['Parameters'] res[k].append(param.replace('B', '') if param != '' else None) # res[k].append(float(param.replace('B', '')) if param != '' else None) elif k == 'Method': name, url = meta['Method'] res[k].append(f'{name}') else: res[k].append(meta[k]) scores, ranks = [], [] for d in fields: # if d == 'MLVU': # item[d]['Overall'] = item[d]['M-Avg'] * 0.84 + item[d]['G-Avg'] * 10 * 0.16 # elif d == 'TempCompass': # item[d]['Overall'] = item[d]['overall'] if d == 'MLVU': # res[d].append( # f'M-Avg: {item[d]["M-Avg"]}, G-Avg: {item[d]["G-Avg"]}' # # { # # 'M-Avg': item[d]['M-Avg'], # # 'G-Avg': item[d]['G-Avg'] # # } # ) res[d].append(item[d]['M-Avg'] * 0.84 + item[d]['G-Avg'] * 10 * 0.16) elif d == 'TempCompass': res[d].append(item[d]['overall']) else: res[d].append(item[d]['Overall']) if d == 'MMBench-Video': scores.append(item[d]['Overall'] / 3 * 100) elif d == 'TempCompass': scores.append(item[d]['overall']) elif d == 'MLVU': scores.append(item[d]['M-Avg'] * 0.84 + item[d]['G-Avg'] * 10 * 0.16) else: scores.append(item[d]['Overall']) if d == 'MLVU': ranks.append(nth_large( item[d]['M-Avg'] * 0.84 + item[d]['G-Avg'] * 10 * 0.16, [x[d]['M-Avg'] * 0.84 + x[d]['G-Avg'] * 10 * 0.16 for x in results.values() if d in x and 'M-Avg' in x[d] and 'G-Avg' in x[d]] )) elif d == 'TempCompass': ranks.append(nth_large(item[d]['overall'], [x[d]['overall'] for x in results.values() if d in x and 'overall' in x[d]])) else: ranks.append(nth_large(item[d]['Overall'], [x[d]['Overall'] for x in results.values() if d in x and 'Overall' in x[d]])) res['Avg Score'].append(round(np.mean(scores), 1)) res['Avg Rank'].append(round(np.mean(ranks), 2)) df = pd.DataFrame(res) df = df.sort_values('Avg Rank') check_box = {} check_box['essential'] = ['Method', 'Parameters (B)', 'Language Model', 'Vision Model', 'Frames'] check_box['required'] = ['Avg Score', 'Avg Rank'] check_box['all'] = check_box['required'] + ['OpenSource', 'Verified'] + fields type_map = defaultdict(lambda: 'number') type_map['Method'] = 'html' type_map['Language Model'] = type_map['Vision Model'] = type_map['OpenSource'] = type_map['Verified'] = type_map['Frames'] = 'str' check_box['type_map'] = type_map return df, check_box def BUILD_L2_DF(results, dataset): res = defaultdict(list) fields = list(list(results.values())[0][dataset].keys()) non_overall_fields = [x for x in fields if 'Overall' not in x and 'Avg' not in x and 'overall' not in x] overall_fields = [x for x in fields if 'Overall' in x or 'Avg' in x or 'overall' in x] for m in results: item = results[m] meta = item['META'] if dataset not in item or item[dataset] == {}: continue for k in META_FIELDS: if k == 'Parameters (B)': param = meta['Parameters'] res[k].append(param.replace('B', '') if param != '' else None) # res[k].append(float(param.replace('B', '')) if param != '' else None) elif k == 'Method': name, url = meta['Method'] res[k].append(f'{name}') else: res[k].append(meta[k]) fields = [x for x in fields] for d in non_overall_fields: res[d].append(item[dataset][d]) for d in overall_fields: res[d].append(item[dataset][d]) df = pd.DataFrame(res) if dataset == 'MLVU': df = df.sort_values('M-Avg') elif dataset == 'TempCompass': df = df.sort_values('overall') else: df = df.sort_values('Overall') df = df.iloc[::-1] check_box = {} check_box['essential'] = ['Method', 'Parameters (B)', 'Language Model', 'Vision Model', 'Frames'] if dataset == 'MMBench-Video': check_box['required'] = overall_fields + ['Perception', 'Reasoning'] elif 'Video-MME' in dataset: check_box['required'] = overall_fields + ['short', 'medium', 'long'] else: check_box['required'] = overall_fields check_box['all'] = non_overall_fields + overall_fields type_map = defaultdict(lambda: 'number') type_map['Method'] = 'html' type_map['Language Model'] = type_map['Vision Model'] = type_map['OpenSource'] = type_map['Verified'] = type_map['Frames'] ='str' check_box['type_map'] = type_map # print(check_box, dataset, df.columns) return df, check_box