import sys import os import re import json import time import shutil import argparse import numpy as np import matplotlib.pyplot as plt from tqdm import tqdm from datetime import datetime from multiprocessing import Pool from multiprocessing.dummy import Pool as ThreadPool from PIL import Image, ImageDraw from skimage.measure import ransac from modules.latex2bbox_color import latex2bbox_color from modules.tokenize_latex.tokenize_latex import tokenize_latex from modules.visual_matcher import HungarianMatcher, SimpleAffineTransform def gen_color_list(num=10, gap=15): num += 1 single_num = 255 // gap + 1 max_num = single_num ** 3 num = min(num, max_num) color_list = [] for idx in range(num): R = idx // single_num**2 GB = idx % single_num**2 G = GB // single_num B = GB % single_num color_list.append((R*gap, G*gap, B*gap)) return color_list[1:] def update_inliers(ori_inliers, sub_inliers): inliers = np.copy(ori_inliers) sub_idx = -1 for idx in range(len(ori_inliers)): if ori_inliers[idx] == False: sub_idx += 1 if sub_inliers[sub_idx] == True: inliers[idx] = True return inliers def reshape_inliers(ori_inliers, sub_inliers): inliers = np.copy(ori_inliers) sub_idx = -1 for idx in range(len(ori_inliers)): if ori_inliers[idx] == False: sub_idx += 1 if sub_inliers[sub_idx] == True: inliers[idx] = True else: inliers[idx] = False return inliers def gen_token_order(box_list): new_box_list = copy.deepcopy(box_list) for idx, box in enumerate(new_box_list): new_box_list[idx]['order'] = idx / len(new_box_list) return new_box_list def evaluation(data_root, user_id="test"): data_root = os.path.join(data_root, user_id) gt_box_dir = os.path.join(data_root, "gt") pred_box_dir = os.path.join(data_root, "pred") match_vis_dir = os.path.join(data_root, "vis_match") os.makedirs(match_vis_dir, exist_ok=True) max_iter = 3 min_samples = 3 residual_threshold = 25 max_trials = 50 metrics_per_img = {} gt_basename_list = [item.split(".")[0] for item in os.listdir(os.path.join(gt_box_dir, 'bbox'))] for basename in tqdm(gt_basename_list): gt_valid, pred_valid = True, True if not os.path.exists(os.path.join(gt_box_dir, 'bbox', basename+".jsonl")): gt_valid = False else: with open(os.path.join(gt_box_dir, 'bbox', basename+".jsonl"), 'r') as f: box_gt = [] for line in f: info = json.loads(line) if info['bbox']: box_gt.append(info) if not box_gt: gt_valid = False if not gt_valid: continue if not os.path.exists(os.path.join(pred_box_dir, 'bbox', basename+".jsonl")): pred_valid = False else: with open(os.path.join(pred_box_dir, 'bbox', basename+".jsonl"), 'r') as f: box_pred = [] for line in f: info = json.loads(line) if info['bbox']: box_pred.append(info) if not box_pred: pred_valid = False if not pred_valid: metrics_per_img[basename] = { "recall": 0, "precision": 0, "F1_score": 0, } continue gt_img_path = os.path.join(gt_box_dir, 'vis', basename+"_base.png") pred_img_path = os.path.join(pred_box_dir, 'vis', basename+"_base.png") img_gt = Image.open(gt_img_path) img_pred = Image.open(pred_img_path) matcher = HungarianMatcher() matched_idxes = matcher(box_gt, box_pred, img_gt.size, img_pred.size) src = [] dst = [] for (idx1, idx2) in matched_idxes: x1min, y1min, x1max, y1max = box_gt[idx1]['bbox'] x2min, y2min, x2max, y2max = box_pred[idx2]['bbox'] x1_c, y1_c = float((x1min+x1max)/2), float((y1min+y1max)/2) x2_c, y2_c = float((x2min+x2max)/2), float((y2min+y2max)/2) src.append([y1_c, x1_c]) dst.append([y2_c, x2_c]) src = np.array(src) dst = np.array(dst) if src.shape[0] <= min_samples: inliers = np.array([True for _ in matched_idxes]) else: inliers = np.array([False for _ in matched_idxes]) for i in range(max_iter): if src[inliers==False].shape[0] <= min_samples: break model, inliers_1 = ransac((src[inliers==False], dst[inliers==False]), SimpleAffineTransform, min_samples=min_samples, residual_threshold=residual_threshold, max_trials=max_trials, random_state=42) if inliers_1 is not None and inliers_1.any(): inliers = update_inliers(inliers, inliers_1) else: break if len(inliers[inliers==True]) >= len(matched_idxes): break for idx, (a,b) in enumerate(matched_idxes): if inliers[idx] == True and matcher.cost['token'][a, b] == 1: inliers[idx] = False final_match_num = len(inliers[inliers==True]) recall = round(final_match_num/(len(box_gt)), 3) precision = round(final_match_num/(len(box_pred)), 3) F1_score = round(2*final_match_num/(len(box_gt)+len(box_pred)), 3) metrics_per_img[basename] = { "recall": recall, "precision": precision, "F1_score": F1_score, } if True: gap = 5 W1, H1 = img_gt.size W2, H2 = img_pred.size H = H1 + H2 + gap W = max(W1, W2) vis_img = Image.new('RGB', (W, H), (255, 255, 255)) vis_img.paste(img_gt, (0, 0)) vis_img.paste(Image.new('RGB', (W, gap), (120, 120, 120)), (0, H1)) vis_img.paste(img_pred, (0, H1+gap)) match_img = vis_img.copy() match_draw = ImageDraw.Draw(match_img) gt_matched_idx = { a: flag for (a,b), flag in zip(matched_idxes, inliers) } pred_matched_idx = { b: flag for (a,b), flag in zip(matched_idxes, inliers) } for idx, box in enumerate(box_gt): if idx in gt_matched_idx and gt_matched_idx[idx]==True: color = "green" else: color = "red" x_min, y_min, x_max, y_max = box['bbox'] match_draw.rectangle([x_min-1, y_min-1, x_max+1, y_max+1], fill=None, outline=color, width=2) for idx, box in enumerate(box_pred): if idx in pred_matched_idx and pred_matched_idx[idx]==True: color = "green" else: color = "red" x_min, y_min, x_max, y_max = box['bbox'] match_draw.rectangle([x_min-1, y_min-1+H1+gap, x_max+1, y_max+1+H1+gap], fill=None, outline=color, width=2) vis_img.save(os.path.join(match_vis_dir, basename+"_base.png")) match_img.save(os.path.join(match_vis_dir, basename+".png")) score_list = [val['F1_score'] for _, val in metrics_per_img.items()] exp_list = [1 if score==1 else 0 for score in score_list] metrics_res = { "mean_score": round(np.mean(score_list), 3), "exp_rate": round(np.mean(exp_list), 3), "details": metrics_per_img } metric_res_path = os.path.join(data_root, "metrics_res.json") with open(metric_res_path, "w") as f: f.write(json.dumps(metrics_res, indent=2)) return metrics_res, metric_res_path, match_vis_dir if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--input', '-i', type=str, default="assets/example/input_example.json") parser.add_argument('--output', '-o', type=str, default="output") parser.add_argument('--pools', '-p', type=int, default=240) args = parser.parse_args() print(args) json_input, data_root, pool_num = args.input, args.output, args.pools temp_dir = os.path.join(data_root, "temp_dir") exp_name = os.path.basename(json_input).split('.')[0] with open(json_input, "r") as f: input_data = json.load(f) img_ids = [] groundtruths = [] predictions = [] for idx, item in enumerate(input_data): if "img_id" in item: img_ids.append(item["img_id"]) else: img_ids.append(f"sample_{idx}") groundtruths.append(item['gt']) predictions.append(item['pred']) a = time.time() user_id = exp_name total_color_list = gen_color_list(num=5800) data_root = os.path.join(data_root, user_id) output_dir_info = {} input_args = [] for subset, latex_list in zip(['gt', 'pred'], [groundtruths, predictions]): sub_temp_dir = os.path.join(temp_dir, f"{exp_name}_{subset}") os.makedirs(sub_temp_dir, exist_ok=True) output_path = os.path.join(data_root, subset) output_dir_info[output_path] = [] os.makedirs(os.path.join(output_path, 'bbox'), exist_ok=True) os.makedirs(os.path.join(output_path, 'vis'), exist_ok=True) for idx, latex in tqdm(enumerate(latex_list), desc=f"collect {subset} latex ..."): basename = img_ids[idx] input_arg = latex, basename, output_path, sub_temp_dir, total_color_list input_args.append(input_arg) if pool_num > 1: print(datetime.now().strftime('%Y-%m-%d %H:%M:%S'), "using processpool, pool num:", pool_num, ", job num:", len(input_args)) myP = Pool(args.pools) for input_arg in input_args: myP.apply_async(latex2bbox_color, args=(input_arg,)) myP.close() myP.join() else: for input_arg in input_args: latex2bbox_color(input_arg) b = time.time() print(datetime.now().strftime('%Y-%m-%d %H:%M:%S'), "extract bbox done, time cost:", round(b-a, 3), "s") for subset in ['gt', 'pred']: shutil.rmtree(os.path.join(temp_dir, f"{exp_name}_{subset}")) c = time.time() metrics_res, metric_res_path, match_vis_dir = evaluation(args.output, exp_name) d = time.time() print(datetime.now().strftime('%Y-%m-%d %H:%M:%S'), "calculate metrics done, time cost:", round(d-c, 3), "s") print(f"=> process done, mean f1 score: {metrics_res['mean_score']}.") print(f"=> more details of metrics are saved in `{metric_res_path}`") print(f"=> visulization images are saved under `{match_vis_dir}`")