Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Copyright (c) 2022, salesforce.com, inc. | |
All rights reserved. | |
SPDX-License-Identifier: BSD-3-Clause | |
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause | |
""" | |
import gzip | |
import logging | |
import os | |
import random as rnd | |
import tarfile | |
import zipfile | |
import decord | |
import webdataset as wds | |
import numpy as np | |
import torch | |
from torch.utils.data.dataset import IterableDataset, ChainDataset | |
from decord import VideoReader | |
from unimernet.common.registry import registry | |
from unimernet.datasets.datasets.base_dataset import ConcatDataset | |
from tqdm import tqdm | |
decord.bridge.set_bridge("torch") | |
MAX_INT = registry.get("MAX_INT") | |
def load_video(video_path, n_frms=MAX_INT, height=-1, width=-1, sampling="uniform"): | |
vr = VideoReader(uri=video_path, height=height, width=width) | |
vlen = len(vr) | |
start, end = 0, vlen | |
n_frms = min(n_frms, vlen) | |
if sampling == "uniform": | |
indices = np.arange(start, end, vlen / n_frms).astype(int) | |
elif sampling == "headtail": | |
indices_h = sorted(rnd.sample(range(vlen // 2), n_frms // 2)) | |
indices_t = sorted(rnd.sample(range(vlen // 2, vlen), n_frms // 2)) | |
indices = indices_h + indices_t | |
else: | |
raise NotImplementedError | |
# get_batch -> T, H, W, C | |
frms = vr.get_batch(indices).permute(3, 0, 1, 2).float() # (C, T, H, W) | |
return frms | |
def apply_to_sample(f, sample): | |
if len(sample) == 0: | |
return {} | |
def _apply(x): | |
if torch.is_tensor(x): | |
return f(x) | |
elif isinstance(x, dict): | |
return {key: _apply(value) for key, value in x.items()} | |
elif isinstance(x, list): | |
return [_apply(x) for x in x] | |
else: | |
return x | |
return _apply(sample) | |
def move_to_cuda(sample): | |
def _move_to_cuda(tensor): | |
return tensor.cuda() | |
return apply_to_sample(_move_to_cuda, sample) | |
def prepare_sample(samples, cuda_enabled=True): | |
if cuda_enabled: | |
samples = move_to_cuda(samples) | |
# TODO fp16 support | |
return samples | |
def reorg_datasets_by_split(datasets): | |
""" | |
Organizes datasets by split. | |
Args: | |
datasets: dict of torch.utils.data.Dataset objects by name. | |
Returns: | |
Dict of datasets by split {split_name: List[Datasets]}. | |
""" | |
# if len(datasets) == 1: | |
# return datasets[list(datasets.keys())[0]] | |
# else: | |
reorg_datasets = dict() | |
# reorganize by split | |
for _, dataset in datasets.items(): | |
for split_name, dataset_split in dataset.items(): | |
if split_name not in reorg_datasets: | |
reorg_datasets[split_name] = [dataset_split] | |
else: | |
reorg_datasets[split_name].append(dataset_split) | |
return reorg_datasets | |
def concat_datasets(datasets): | |
""" | |
Concatenates multiple datasets into a single dataset. | |
It supports may-style datasets and DataPipeline from WebDataset. Currently, does not support | |
generic IterableDataset because it requires creating separate samplers. | |
Now only supports conctenating training datasets and assuming validation and testing | |
have only a single dataset. This is because metrics should not be computed on the concatenated | |
datasets. | |
Args: | |
datasets: dict of torch.utils.data.Dataset objects by split. | |
Returns: | |
Dict of concatenated datasets by split, "train" is the concatenation of multiple datasets, | |
"val" and "test" remain the same. | |
If the input training datasets contain both map-style and DataPipeline datasets, returns | |
a tuple, where the first element is a concatenated map-style dataset and the second | |
element is a chained DataPipeline dataset. | |
""" | |
# concatenate datasets in the same split | |
for split_name in datasets: | |
if split_name != "train": | |
assert ( | |
len(datasets[split_name]) == 1 | |
), "Do not support multiple {} datasets.".format(split_name) | |
datasets[split_name] = datasets[split_name][0] | |
else: | |
iterable_datasets, map_datasets = [], [] | |
for dataset in datasets[split_name]: | |
if isinstance(dataset, wds.DataPipeline): | |
logging.info( | |
"Dataset {} is IterableDataset, can't be concatenated.".format( | |
dataset | |
) | |
) | |
iterable_datasets.append(dataset) | |
elif isinstance(dataset, IterableDataset): | |
raise NotImplementedError( | |
"Do not support concatenation of generic IterableDataset." | |
) | |
else: | |
map_datasets.append(dataset) | |
# if len(iterable_datasets) > 0: | |
# concatenate map-style datasets and iterable-style datasets separately | |
chained_datasets = ( | |
ChainDataset(iterable_datasets) if len(iterable_datasets) > 0 else None | |
) | |
concat_datasets = ( | |
ConcatDataset(map_datasets) if len(map_datasets) > 0 else None | |
) | |
train_datasets = concat_datasets, chained_datasets | |
train_datasets = tuple([x for x in train_datasets if x is not None]) | |
train_datasets = ( | |
train_datasets[0] if len(train_datasets) == 1 else train_datasets | |
) | |
datasets[split_name] = train_datasets | |
return datasets | |
def extract_archive(from_path, to_path=None, overwrite=False): | |
"""Extract archive. | |
Args: | |
from_path: the path of the archive. | |
to_path: the root path of the extracted files (directory of from_path) | |
overwrite: overwrite existing files (False) | |
Returns: | |
List of paths to extracted files even if not overwritten. | |
Examples: | |
>>> url = 'http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/validation.tar.gz' | |
>>> from_path = './validation.tar.gz' | |
>>> to_path = './' | |
>>> torchtext.utils.download_from_url(url, from_path) | |
>>> torchtext.utils.extract_archive(from_path, to_path) | |
>>> ['.data/val.de', '.data/val.en'] | |
>>> torchtext.utils.download_from_url(url, from_path) | |
>>> torchtext.utils.extract_archive(from_path, to_path) | |
>>> ['.data/val.de', '.data/val.en'] | |
""" | |
if to_path is None: | |
to_path = os.path.dirname(from_path) | |
if from_path.endswith((".tar.gz", ".tgz")): | |
logging.info("Opening tar file {} to {}.".format(from_path, to_path)) | |
with tarfile.open(from_path, "r") as tar: | |
files = [] | |
for file_ in tqdm(tar): | |
file_path = os.path.join(to_path, file_.name) | |
if file_.isfile(): | |
files.append(file_path) | |
if os.path.exists(file_path): | |
logging.info("{} already extracted.".format(file_path)) | |
if not overwrite: | |
continue | |
tar.extract(file_, to_path) | |
logging.info("Finished extracting tar file {}.".format(from_path)) | |
return files | |
elif from_path.endswith(".zip"): | |
assert zipfile.is_zipfile(from_path), from_path | |
logging.info("Opening zip file {} to {}.".format(from_path, to_path)) | |
with zipfile.ZipFile(from_path, "r") as zfile: | |
files = [] | |
for file_ in tqdm(zfile.namelist()): | |
file_path = os.path.join(to_path, file_) | |
files.append(file_path) | |
if os.path.exists(file_path): | |
logging.info("{} already extracted.".format(file_path)) | |
if not overwrite: | |
continue | |
zfile.extract(file_, to_path) | |
files = [f for f in files if os.path.isfile(f)] | |
logging.info("Finished extracting zip file {}.".format(from_path)) | |
return files | |
elif from_path.endswith(".gz"): | |
logging.info("Opening gz file {} to {}.".format(from_path, to_path)) | |
default_block_size = 65536 | |
filename = from_path[:-3] | |
files = [filename] | |
with gzip.open(from_path, "rb") as gzfile, open(filename, "wb") as d_file: | |
while True: | |
block = gzfile.read(default_block_size) | |
if not block: | |
break | |
else: | |
d_file.write(block) | |
d_file.write(block) | |
logging.info("Finished extracting gz file {}.".format(from_path)) | |
return files | |
else: | |
raise NotImplementedError( | |
"We currently only support tar.gz, .tgz, .gz and zip achives." | |
) | |
def save_frames_grid(img_array, out_path): | |
import torch | |
from PIL import Image | |
from torchvision.utils import make_grid | |
if len(img_array.shape) == 3: | |
img_array = img_array.unsqueeze(0) | |
elif len(img_array.shape) == 5: | |
b, t, c, h, w = img_array.shape | |
img_array = img_array.view(-1, c, h, w) | |
elif len(img_array.shape) == 4: | |
pass | |
else: | |
raise NotImplementedError( | |
"Supports only (b,t,c,h,w)-shaped inputs. First two dimensions can be ignored." | |
) | |
assert img_array.shape[1] == 3, "Exepcting input shape of (H, W, 3), i.e. RGB-only." | |
grid = make_grid(img_array) | |
ndarr = grid.permute(1, 2, 0).to("cpu", torch.uint8).numpy() | |
img = Image.fromarray(ndarr) | |
img.save(out_path) | |