model: arch: unimernet model_type: unimernet model_config: model_name: ./models/unimernet_base max_seq_len: 1536 load_pretrained: True pretrained: './models/unimernet_base/pytorch_model.pth' tokenizer_config: path: ./models/unimernet_base datasets: formula_rec_eval: vis_processor: eval: name: "formula_image_eval" image_size: - 192 - 672 run: runner: runner_iter task: unimernet_train batch_size_train: 64 batch_size_eval: 64 num_workers: 1 iters_per_inner_epoch: 2000 max_iters: 60000 seed: 42 output_dir: "../output/demo" evaluate: True test_splits: [ "eval" ] device: "cuda" world_size: 1 dist_url: "env://" distributed: True distributed_type: ddp # or fsdp when train llm generate_cfg: temperature: 0.0