jeremyarancio commited on
Commit
fd7a708
Β·
1 Parent(s): 9eda409
README.md CHANGED
@@ -1,14 +1,14 @@
1
  ---
2
  title: Crop Detection
3
- emoji: 🐒
4
- colorFrom: pink
5
  colorTo: red
6
  sdk: gradio
7
  sdk_version: 4.44.0
8
  app_file: app.py
9
  pinned: false
10
  license: agpl-3.0
11
- short_description: Crop product pictures
12
  ---
13
 
14
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
  title: Crop Detection
3
+ emoji: πŸ‹β€πŸŸ©
4
+ colorFrom: purple
5
  colorTo: red
6
  sdk: gradio
7
  sdk_version: 4.44.0
8
  app_file: app.py
9
  pinned: false
10
  license: agpl-3.0
11
+ short_description: 'Detect product on pictures and crop it. '
12
  ---
13
 
14
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+
3
+ import gradio as gr
4
+ from ultralytics import YOLO
5
+ from PIL import Image
6
+
7
+
8
+ # Load YOLOv8n model
9
+ MODEL = YOLO('weights/best.pt')
10
+ IMAGES_PATH = Path("images/")
11
+
12
+ INF_PARAMETERS = {
13
+ "imgsz": 640, # image size
14
+ "conf": 0.8, # confidence threshold
15
+ "max_det": 1 # maximum number of detections
16
+ }
17
+
18
+ EXAMPLES = [path for path in IMAGES_PATH.iterdir()]
19
+
20
+
21
+ # Function to detect objects and crop the image
22
+ def detect_and_crop(image: Image.Image) -> Image.Image:
23
+ # Perform object detection
24
+ results = MODEL.predict(image,**INF_PARAMETERS)
25
+ result = results[0]
26
+ for box in result.boxes.xyxy.cpu().numpy():
27
+ cropped_image = image.crop(box=box)
28
+ return cropped_image
29
+
30
+
31
+ # Gradio UI
32
+ title = "Crop-Detection"
33
+ description = """## πŸ‹β€πŸŸ© Automatically crop product pictures! πŸ‹β€πŸŸ©
34
+ When contributors use the mobile app, they are asked to take pictures of the product, then to crop it.
35
+ To assist users during the process, we create a crop-detection model desin to detect the product edges.
36
+
37
+ We fine-tuned Yolov8n on images extracted from the Open Food Facts database.
38
+ Check the [model repo page](https://huggingface.co/openfoodfacts/crop-detection) for more information.
39
+ """
40
+
41
+ # Gradio Interface
42
+ demo = gr.Interface(
43
+ fn=detect_and_crop,
44
+ inputs=gr.Image(type="pil", width=300),
45
+ outputs=gr.Image(type="pil", width=300),
46
+ title=title,
47
+ description=description,
48
+ allow_flagging="never",
49
+ examples=EXAMPLES
50
+ )
51
+
52
+
53
+ # Launch the Gradio app
54
+ if __name__ == "__main__":
55
+ demo.launch()
images/244-186-801-1681-1.jpg ADDED
images/560-085-462-5494-1.jpg ADDED
images/761-650-065-7595-1.jpg ADDED
images/761-670-010-2017-1.jpg ADDED
images/800-434-901-2658-1.jpg ADDED
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ultralytics=8.2.94
2
+ gradio
3
+ spaces
4
+ numpy
weights/best.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1b6eeff46da1f6c57d6835b695d074b1cb4d1194cee8f395007a48f99fd077c
3
+ size 6267491