Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -55,52 +55,73 @@ class calculateDuration:
|
|
55 |
else:
|
56 |
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
|
57 |
|
58 |
-
def update_selection(evt: gr.SelectData, width, height
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
# Initialize outputs
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
remove_lora1_visible = True
|
70 |
-
elif selected_lora2 is None:
|
71 |
-
selected_lora2 = selected_lora
|
72 |
-
selected_lora2_info = f"### LoRA 2 Selected: [{selected_lora2['title']}](https://huggingface.co/{selected_lora2['repo']}) ✨"
|
73 |
-
lora_scale2_visible = True
|
74 |
-
remove_lora2_visible = True
|
75 |
else:
|
76 |
-
|
77 |
-
|
78 |
-
# Update placeholder
|
79 |
-
placeholder_update = gr.update(placeholder=new_placeholder)
|
80 |
-
|
81 |
-
# For width and height adjustment
|
82 |
-
if "aspect" in selected_lora:
|
83 |
-
if selected_lora["aspect"] == "portrait":
|
84 |
-
width = 768
|
85 |
-
height = 1024
|
86 |
-
elif selected_lora["aspect"] == "landscape":
|
87 |
-
width = 1024
|
88 |
-
height = 768
|
89 |
-
else:
|
90 |
-
width = 1024
|
91 |
-
height = 1024
|
92 |
|
93 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
-
def
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
-
def
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
@spaces.GPU(duration=70)
|
106 |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress):
|
@@ -115,6 +136,7 @@ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress)
|
|
115 |
width=width,
|
116 |
height=height,
|
117 |
generator=generator,
|
|
|
118 |
output_type="pil",
|
119 |
good_vae=good_vae,
|
120 |
):
|
@@ -134,59 +156,54 @@ def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps
|
|
134 |
width=width,
|
135 |
height=height,
|
136 |
generator=generator,
|
|
|
137 |
output_type="pil",
|
138 |
).images[0]
|
139 |
return final_image
|
140 |
-
|
141 |
-
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, randomize_seed, seed, width, height, selected_lora1, selected_lora2, lora_scale1, lora_scale2, progress=gr.Progress(track_tqdm=True)):
|
142 |
-
if selected_lora1 is None and selected_lora2 is None:
|
143 |
-
raise gr.Error("You must select at least one LoRA before proceeding.")
|
144 |
|
145 |
-
|
146 |
-
|
|
|
147 |
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
if selected_lora2 is not None:
|
158 |
-
trigger_word2 = selected_lora2.get("trigger_word", "")
|
159 |
-
if trigger_word2:
|
160 |
-
if selected_lora2.get("trigger_position") == "prepend":
|
161 |
-
trigger_words.insert(0, trigger_word2)
|
162 |
else:
|
163 |
-
|
164 |
-
# Combine trigger words with the prompt
|
165 |
-
if trigger_words:
|
166 |
-
prompt_mash = f"{' '.join(trigger_words)} {prompt}"
|
167 |
|
168 |
-
|
|
|
169 |
pipe.unload_lora_weights()
|
170 |
pipe_i2i.unload_lora_weights()
|
171 |
-
|
172 |
# Load LoRA weights with respective scales
|
173 |
with calculateDuration("Loading LoRA weights"):
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
if
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
|
|
|
|
|
|
185 |
# Set random seed for reproducibility
|
186 |
with calculateDuration("Randomizing seed"):
|
187 |
if randomize_seed:
|
188 |
seed = random.randint(0, MAX_SEED)
|
189 |
-
|
|
|
190 |
if image_input is not None:
|
191 |
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed)
|
192 |
yield final_image, seed, gr.update(visible=False)
|
@@ -196,37 +213,37 @@ def run_lora(prompt, image_input, image_strength, cfg_scale, steps, randomize_se
|
|
196 |
final_image = None
|
197 |
step_counter = 0
|
198 |
for image in image_generator:
|
199 |
-
step_counter
|
200 |
final_image = image
|
201 |
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
|
202 |
yield image, seed, gr.update(value=progress_bar, visible=True)
|
203 |
yield final_image, seed, gr.update(value=progress_bar, visible=False)
|
204 |
-
|
205 |
def get_huggingface_safetensors(link):
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
|
231 |
def check_custom_model(link):
|
232 |
if(link.startswith("https://")):
|
@@ -286,8 +303,8 @@ css = '''
|
|
286 |
#title img{width: 100px; margin-right: 0.5em}
|
287 |
#gallery .grid-wrap{height: 10vh}
|
288 |
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
|
289 |
-
.
|
290 |
-
.
|
291 |
.styler{--form-gap-width: 0px !important}
|
292 |
#progress{height:30px}
|
293 |
#progress .generating{display:none}
|
@@ -299,11 +316,10 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 3600)) as app:
|
|
299 |
"""<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA"> LoRA Lab</h1>""",
|
300 |
elem_id="title",
|
301 |
)
|
302 |
-
|
303 |
-
selected_lora2 = gr.State(None)
|
304 |
with gr.Row():
|
305 |
with gr.Column(scale=3):
|
306 |
-
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting
|
307 |
with gr.Column(scale=1, elem_id="gen_column"):
|
308 |
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
|
309 |
with gr.Row():
|
@@ -320,21 +336,18 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 3600)) as app:
|
|
320 |
gr.Markdown("[Check the list of FLUX LoRas](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
|
321 |
custom_lora_info = gr.HTML(visible=False)
|
322 |
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
|
323 |
-
# Selected LoRAs section
|
324 |
-
gr.Markdown("### Selected LoRAs")
|
325 |
-
with gr.Row():
|
326 |
-
with gr.Column():
|
327 |
-
selected_lora1_info = gr.Markdown("", visible=False)
|
328 |
-
lora_scale1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.01, value=0.95, visible=False)
|
329 |
-
remove_lora1_button = gr.Button("Remove LoRA 1", visible=False)
|
330 |
-
with gr.Column():
|
331 |
-
selected_lora2_info = gr.Markdown("", visible=False)
|
332 |
-
lora_scale2 = gr.Slider(label="LoRA 2 Scale", minimum=0, maximum=3, step=0.01, value=0.95, visible=False)
|
333 |
-
remove_lora2_button = gr.Button("Remove LoRA 2", visible=False)
|
334 |
with gr.Column():
|
335 |
progress_bar = gr.Markdown(elem_id="progress",visible=False)
|
336 |
result = gr.Image(label="Generated Image")
|
337 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
with gr.Row():
|
339 |
with gr.Accordion("Advanced Settings", open=False):
|
340 |
with gr.Row():
|
@@ -352,35 +365,35 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 3600)) as app:
|
|
352 |
with gr.Row():
|
353 |
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
354 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
355 |
-
|
356 |
gallery.select(
|
357 |
update_selection,
|
358 |
-
inputs=[width, height
|
359 |
-
outputs=[prompt,
|
360 |
)
|
361 |
-
|
362 |
-
|
363 |
-
inputs=[
|
364 |
-
outputs=[
|
365 |
)
|
366 |
-
|
367 |
-
|
368 |
-
inputs=[
|
369 |
-
outputs=[
|
370 |
)
|
371 |
custom_lora.input(
|
372 |
add_custom_lora,
|
373 |
inputs=[custom_lora],
|
374 |
-
outputs=[custom_lora_info, custom_lora_button, gallery,
|
375 |
)
|
376 |
custom_lora_button.click(
|
377 |
remove_custom_lora,
|
378 |
-
outputs=[custom_lora_info, custom_lora_button, gallery,
|
379 |
)
|
380 |
gr.on(
|
381 |
triggers=[generate_button.click, prompt.submit],
|
382 |
fn=run_lora,
|
383 |
-
inputs=[prompt, input_image, image_strength, cfg_scale, steps,
|
384 |
outputs=[result, seed, progress_bar]
|
385 |
)
|
386 |
|
|
|
55 |
else:
|
56 |
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
|
57 |
|
58 |
+
def update_selection(evt: gr.SelectData, selected_indices, width, height):
|
59 |
+
selected_index = evt.index
|
60 |
+
selected_indices = selected_indices or []
|
61 |
+
if selected_index in selected_indices:
|
62 |
+
# LoRA is already selected, remove it
|
63 |
+
selected_indices.remove(selected_index)
|
64 |
+
else:
|
65 |
+
if len(selected_indices) < 2:
|
66 |
+
selected_indices.append(selected_index)
|
67 |
+
else:
|
68 |
+
raise gr.Error("You can select up to 2 LoRAs only.")
|
69 |
|
70 |
# Initialize outputs
|
71 |
+
selected_info_1 = ""
|
72 |
+
selected_info_2 = ""
|
73 |
+
if len(selected_indices) >= 1:
|
74 |
+
lora1 = loras[selected_indices[0]]
|
75 |
+
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
|
76 |
+
if len(selected_indices) >= 2:
|
77 |
+
lora2 = loras[selected_indices[1]]
|
78 |
+
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
|
79 |
|
80 |
+
# Update prompt placeholder based on last selected LoRA
|
81 |
+
if selected_indices:
|
82 |
+
last_selected_lora = loras[selected_indices[-1]]
|
83 |
+
new_placeholder = f"Type a prompt for {last_selected_lora['title']}"
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
else:
|
85 |
+
new_placeholder = "Type a prompt after selecting a LoRA"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
+
return (
|
88 |
+
gr.update(placeholder=new_placeholder),
|
89 |
+
selected_info_1,
|
90 |
+
selected_info_2,
|
91 |
+
selected_indices,
|
92 |
+
width,
|
93 |
+
height,
|
94 |
+
)
|
95 |
|
96 |
+
def remove_lora_1(selected_indices):
|
97 |
+
selected_indices = selected_indices or []
|
98 |
+
if len(selected_indices) >= 1:
|
99 |
+
selected_indices.pop(0)
|
100 |
+
# Update selected_info_1 and selected_info_2
|
101 |
+
selected_info_1 = ""
|
102 |
+
selected_info_2 = ""
|
103 |
+
if len(selected_indices) >= 1:
|
104 |
+
lora1 = loras[selected_indices[0]]
|
105 |
+
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
|
106 |
+
if len(selected_indices) >= 2:
|
107 |
+
lora2 = loras[selected_indices[1]]
|
108 |
+
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
|
109 |
+
return selected_info_1, selected_info_2, selected_indices
|
110 |
|
111 |
+
def remove_lora_2(selected_indices):
|
112 |
+
selected_indices = selected_indices or []
|
113 |
+
if len(selected_indices) >= 2:
|
114 |
+
selected_indices.pop(1)
|
115 |
+
# Update selected_info_1 and selected_info_2
|
116 |
+
selected_info_1 = ""
|
117 |
+
selected_info_2 = ""
|
118 |
+
if len(selected_indices) >= 1:
|
119 |
+
lora1 = loras[selected_indices[0]]
|
120 |
+
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
|
121 |
+
if len(selected_indices) >= 2:
|
122 |
+
lora2 = loras[selected_indices[1]]
|
123 |
+
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
|
124 |
+
return selected_info_1, selected_info_2, selected_indices
|
125 |
|
126 |
@spaces.GPU(duration=70)
|
127 |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress):
|
|
|
136 |
width=width,
|
137 |
height=height,
|
138 |
generator=generator,
|
139 |
+
joint_attention_kwargs={"scale": 1.0},
|
140 |
output_type="pil",
|
141 |
good_vae=good_vae,
|
142 |
):
|
|
|
156 |
width=width,
|
157 |
height=height,
|
158 |
generator=generator,
|
159 |
+
joint_attention_kwargs={"scale": 1.0},
|
160 |
output_type="pil",
|
161 |
).images[0]
|
162 |
return final_image
|
|
|
|
|
|
|
|
|
163 |
|
164 |
+
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, progress=gr.Progress(track_tqdm=True)):
|
165 |
+
if not selected_indices:
|
166 |
+
raise gr.Error("You must select at least one LoRA before proceeding.")
|
167 |
|
168 |
+
selected_loras = [loras[idx] for idx in selected_indices]
|
169 |
+
|
170 |
+
# Build the prompt with trigger words
|
171 |
+
prompt_mash = prompt
|
172 |
+
for lora in selected_loras:
|
173 |
+
trigger_word = lora.get('trigger_word', '')
|
174 |
+
if trigger_word:
|
175 |
+
if lora.get("trigger_position") == "prepend":
|
176 |
+
prompt_mash = f"{trigger_word} {prompt_mash}"
|
|
|
|
|
|
|
|
|
|
|
177 |
else:
|
178 |
+
prompt_mash = f"{prompt_mash} {trigger_word}"
|
|
|
|
|
|
|
179 |
|
180 |
+
# Unload previous LoRA weights
|
181 |
+
with calculateDuration("Unloading LoRA"):
|
182 |
pipe.unload_lora_weights()
|
183 |
pipe_i2i.unload_lora_weights()
|
184 |
+
|
185 |
# Load LoRA weights with respective scales
|
186 |
with calculateDuration("Loading LoRA weights"):
|
187 |
+
for idx, lora in enumerate(selected_loras):
|
188 |
+
lora_path = lora['repo']
|
189 |
+
scale = lora_scale_1 if idx == 0 else lora_scale_2
|
190 |
+
if image_input is not None:
|
191 |
+
if "weights" in lora:
|
192 |
+
pipe_i2i.load_lora_weights(lora_path, weight_name=lora["weights"], multiplier=scale)
|
193 |
+
else:
|
194 |
+
pipe_i2i.load_lora_weights(lora_path, multiplier=scale)
|
195 |
+
else:
|
196 |
+
if "weights" in lora:
|
197 |
+
pipe.load_lora_weights(lora_path, weight_name=lora["weights"], multiplier=scale)
|
198 |
+
else:
|
199 |
+
pipe.load_lora_weights(lora_path, multiplier=scale)
|
200 |
+
|
201 |
# Set random seed for reproducibility
|
202 |
with calculateDuration("Randomizing seed"):
|
203 |
if randomize_seed:
|
204 |
seed = random.randint(0, MAX_SEED)
|
205 |
+
|
206 |
+
# Generate image
|
207 |
if image_input is not None:
|
208 |
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed)
|
209 |
yield final_image, seed, gr.update(visible=False)
|
|
|
213 |
final_image = None
|
214 |
step_counter = 0
|
215 |
for image in image_generator:
|
216 |
+
step_counter+=1
|
217 |
final_image = image
|
218 |
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
|
219 |
yield image, seed, gr.update(value=progress_bar, visible=True)
|
220 |
yield final_image, seed, gr.update(value=progress_bar, visible=False)
|
221 |
+
|
222 |
def get_huggingface_safetensors(link):
|
223 |
+
split_link = link.split("/")
|
224 |
+
if(len(split_link) == 2):
|
225 |
+
model_card = ModelCard.load(link)
|
226 |
+
base_model = model_card.data.get("base_model")
|
227 |
+
print(base_model)
|
228 |
+
if((base_model != "black-forest-labs/FLUX.1-dev") and (base_model != "black-forest-labs/FLUX.1-schnell")):
|
229 |
+
raise Exception("Not a FLUX LoRA!")
|
230 |
+
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
|
231 |
+
trigger_word = model_card.data.get("instance_prompt", "")
|
232 |
+
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
|
233 |
+
fs = HfFileSystem()
|
234 |
+
try:
|
235 |
+
list_of_files = fs.ls(link, detail=False)
|
236 |
+
for file in list_of_files:
|
237 |
+
if(file.endswith(".safetensors")):
|
238 |
+
safetensors_name = file.split("/")[-1]
|
239 |
+
if (not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp"))):
|
240 |
+
image_elements = file.split("/")
|
241 |
+
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
|
242 |
+
except Exception as e:
|
243 |
+
print(e)
|
244 |
+
gr.Warning(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
|
245 |
+
raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
|
246 |
+
return split_link[1], link, safetensors_name, trigger_word, image_url
|
247 |
|
248 |
def check_custom_model(link):
|
249 |
if(link.startswith("https://")):
|
|
|
303 |
#title img{width: 100px; margin-right: 0.5em}
|
304 |
#gallery .grid-wrap{height: 10vh}
|
305 |
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
|
306 |
+
.card_internal{display: flex;height: 100px;margin-top: .5em}
|
307 |
+
.card_internal img{margin-right: 1em}
|
308 |
.styler{--form-gap-width: 0px !important}
|
309 |
#progress{height:30px}
|
310 |
#progress .generating{display:none}
|
|
|
316 |
"""<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA"> LoRA Lab</h1>""",
|
317 |
elem_id="title",
|
318 |
)
|
319 |
+
selected_indices = gr.State([])
|
|
|
320 |
with gr.Row():
|
321 |
with gr.Column(scale=3):
|
322 |
+
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
|
323 |
with gr.Column(scale=1, elem_id="gen_column"):
|
324 |
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
|
325 |
with gr.Row():
|
|
|
336 |
gr.Markdown("[Check the list of FLUX LoRas](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
|
337 |
custom_lora_info = gr.HTML(visible=False)
|
338 |
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
339 |
with gr.Column():
|
340 |
progress_bar = gr.Markdown(elem_id="progress",visible=False)
|
341 |
result = gr.Image(label="Generated Image")
|
342 |
+
with gr.Row():
|
343 |
+
with gr.Column():
|
344 |
+
selected_info_1 = gr.Markdown("")
|
345 |
+
lora_scale_1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.01, value=0.95)
|
346 |
+
remove_button_1 = gr.Button("Remove LoRA 1")
|
347 |
+
with gr.Column():
|
348 |
+
selected_info_2 = gr.Markdown("")
|
349 |
+
lora_scale_2 = gr.Slider(label="LoRA 2 Scale", minimum=0, maximum=3, step=0.01, value=0.95)
|
350 |
+
remove_button_2 = gr.Button("Remove LoRA 2")
|
351 |
with gr.Row():
|
352 |
with gr.Accordion("Advanced Settings", open=False):
|
353 |
with gr.Row():
|
|
|
365 |
with gr.Row():
|
366 |
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
367 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
368 |
+
|
369 |
gallery.select(
|
370 |
update_selection,
|
371 |
+
inputs=[selected_indices, width, height],
|
372 |
+
outputs=[prompt, selected_info_1, selected_info_2, selected_indices, width, height]
|
373 |
)
|
374 |
+
remove_button_1.click(
|
375 |
+
remove_lora_1,
|
376 |
+
inputs=[selected_indices],
|
377 |
+
outputs=[selected_info_1, selected_info_2, selected_indices]
|
378 |
)
|
379 |
+
remove_button_2.click(
|
380 |
+
remove_lora_2,
|
381 |
+
inputs=[selected_indices],
|
382 |
+
outputs=[selected_info_1, selected_info_2, selected_indices]
|
383 |
)
|
384 |
custom_lora.input(
|
385 |
add_custom_lora,
|
386 |
inputs=[custom_lora],
|
387 |
+
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info_1, selected_indices, prompt]
|
388 |
)
|
389 |
custom_lora_button.click(
|
390 |
remove_custom_lora,
|
391 |
+
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info_1, selected_indices, custom_lora]
|
392 |
)
|
393 |
gr.on(
|
394 |
triggers=[generate_button.click, prompt.submit],
|
395 |
fn=run_lora,
|
396 |
+
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height],
|
397 |
outputs=[result, seed, progress_bar]
|
398 |
)
|
399 |
|