Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 5,361 Bytes
c26f143 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import requests
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime, timedelta
import numpy as np
import streamlit as st
import plotly.graph_objects as go
import plotly.express as px
from PIL import Image
import io
import base64
# νμ΄μ§ μ€μ
st.set_page_config(layout="wide", page_title="HuggingFace Spaces Trending Analysis")
# μ€νμΌ μ μ©
st.markdown("""
<style>
.main {
background-color: #f5f5f5;
}
.stButton>button {
background-color: #ff4b4b;
color: white;
border-radius: 5px;
}
.trending-card {
padding: 20px;
border-radius: 10px;
background-color: white;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
margin: 10px 0;
}
</style>
""", unsafe_allow_html=True)
# νμ΄ν
st.title("π€ HuggingFace Spaces Trending Analysis")
# κ΄μ¬ μ€νμ΄μ€ URL 리μ€νΈμ μ 보
target_spaces = {
"ginipick/FLUXllama": "https://huggingface.co/spaces/ginipick/FLUXllama",
"ginipick/SORA-3D": "https://huggingface.co/spaces/ginipick/SORA-3D",
"fantaxy/Sound-AI-SFX": "https://huggingface.co/spaces/fantaxy/Sound-AI-SFX",
# ... [λλ¨Έμ§ μ€νμ΄μ€λ€λ λμΌν νμμΌλ‘ μΆκ°]
"NCSOFT/VARCO_Arena": "https://huggingface.co/spaces/NCSOFT/VARCO_Arena"
}
def get_trending_spaces(date):
url = f"https://huggingface.co/api/spaces/trending?date={date}&limit=300"
response = requests.get(url)
if response.status_code == 200:
return response.json()
return None
def get_space_rank(spaces, space_id):
for idx, space in enumerate(spaces, 1):
if space.get('id', '') == space_id:
return idx
return None
# λ°μ΄ν° μμ§
@st.cache_data
def fetch_trending_data():
start_date = datetime(2023, 12, 1)
end_date = datetime(2023, 12, 31)
dates = [(start_date + timedelta(days=x)).strftime('%Y-%m-%d')
for x in range((end_date - start_date).days + 1)]
trending_data = {}
target_space_ranks = {space: [] for space in target_spaces.keys()}
with st.spinner('λ°μ΄ν°λ₯Ό λΆλ¬μ€λ μ€...'):
for date in dates:
spaces = get_trending_spaces(date)
if spaces:
trending_data[date] = spaces
for space_id in target_spaces.keys():
rank = get_space_rank(spaces, space_id)
target_space_ranks[space_id].append(rank)
return trending_data, target_space_ranks, dates
trending_data, target_space_ranks, dates = fetch_trending_data()
# μκ°ν
st.header("π Trending Rank Changes")
# Plotlyλ₯Ό μ¬μ©ν μΈν°λν°λΈ κ·Έλν
fig = go.Figure()
for space_id, ranks in target_space_ranks.items():
fig.add_trace(go.Scatter(
x=dates,
y=ranks,
name=space_id,
mode='lines+markers',
hovertemplate=
'<b>Date</b>: %{x}<br>' +
'<b>Rank</b>: %{y}<br>' +
'<b>Space</b>: ' + space_id
))
fig.update_layout(
title='Trending Ranks Over Time',
xaxis_title='Date',
yaxis_title='Rank',
yaxis_autorange='reversed',
height=800,
template='plotly_white',
hovermode='x unified'
)
st.plotly_chart(fig, use_container_width=True)
# μ΅μ μμ μ 보 μΆλ ₯
st.header("π Latest Rankings")
latest_date = max(trending_data.keys())
latest_spaces = trending_data[latest_date]
cols = st.columns(3)
col_idx = 0
for space_id, url in target_spaces.items():
rank = get_space_rank(latest_spaces, space_id)
if rank:
space_info = next((s for s in latest_spaces if s['id'] == space_id), None)
if space_info:
with cols[col_idx % 3]:
with st.container():
st.markdown(f"""
<div class="trending-card">
<h3>#{rank} - {space_id}</h3>
<p>π Likes: {space_info.get('likes', 'N/A')}</p>
<p>π {space_info.get('title', 'N/A')}</p>
<p>{space_info.get('description', 'N/A')[:100]}...</p>
<a href="{url}" target="_blank">Visit Space π</a>
</div>
""", unsafe_allow_html=True)
col_idx += 1
# λ€μ΄λ‘λ κΈ°λ₯
st.header("π Download Data")
# DataFrame μμ±
df_data = []
for date in dates:
spaces = trending_data.get(date, [])
for space_id in target_spaces.keys():
rank = get_space_rank(spaces, space_id)
if rank:
space_info = next((s for s in spaces if s['id'] == space_id), None)
if space_info:
df_data.append({
'Date': date,
'Space ID': space_id,
'Rank': rank,
'Likes': space_info.get('likes', 'N/A'),
'Title': space_info.get('title', 'N/A'),
'URL': target_spaces[space_id]
})
df = pd.DataFrame(df_data)
# CSV λ€μ΄λ‘λ λ²νΌ
csv = df.to_csv(index=False)
b64 = base64.b64encode(csv.encode()).decode()
href = f'<a href="data:file/csv;base64,{b64}" download="trending_data.csv">Download CSV File</a>'
st.markdown(href, unsafe_allow_html=True)
# νΈν°
st.markdown("""
---
Made with β€οΈ using Streamlit and HuggingFace API
""") |