Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -1,1061 +1,2 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import requests
|
3 |
-
import json
|
4 |
import os
|
5 |
-
|
6 |
-
from concurrent.futures import ThreadPoolExecutor, as_completed
|
7 |
-
from functools import lru_cache
|
8 |
-
from requests.adapters import HTTPAdapter
|
9 |
-
from requests.packages.urllib3.util.retry import Retry
|
10 |
-
from openai import OpenAI
|
11 |
-
from bs4 import BeautifulSoup
|
12 |
-
import re
|
13 |
-
import pathlib
|
14 |
-
import sqlite3
|
15 |
-
import pytz
|
16 |
-
|
17 |
-
# List of target companies/keywords
|
18 |
-
KOREAN_COMPANIES = [
|
19 |
-
"NVIDIA",
|
20 |
-
"ALPHABET",
|
21 |
-
"APPLE",
|
22 |
-
"TESLA",
|
23 |
-
"AMAZON",
|
24 |
-
"MICROSOFT",
|
25 |
-
"META",
|
26 |
-
"INTEL",
|
27 |
-
"SAMSUNG",
|
28 |
-
"HYNIX",
|
29 |
-
"BITCOIN",
|
30 |
-
"crypto",
|
31 |
-
"stock",
|
32 |
-
"Economics",
|
33 |
-
"Finance",
|
34 |
-
"investing"
|
35 |
-
]
|
36 |
-
|
37 |
-
def convert_to_seoul_time(timestamp_str):
|
38 |
-
"""
|
39 |
-
Convert a given timestamp string (UTC) to Seoul time (KST).
|
40 |
-
"""
|
41 |
-
try:
|
42 |
-
dt = datetime.strptime(timestamp_str, '%Y-%m-%d %H:%M:%S')
|
43 |
-
seoul_tz = pytz.timezone('Asia/Seoul')
|
44 |
-
seoul_time = seoul_tz.localize(dt)
|
45 |
-
return seoul_time.strftime('%Y-%m-%d %H:%M:%S KST')
|
46 |
-
except Exception as e:
|
47 |
-
print(f"Time conversion error: {str(e)}")
|
48 |
-
return timestamp_str
|
49 |
-
|
50 |
-
def analyze_sentiment_batch(articles, client):
|
51 |
-
"""
|
52 |
-
Perform a comprehensive sentiment analysis of the news articles using the OpenAI API.
|
53 |
-
"""
|
54 |
-
try:
|
55 |
-
# Combine all articles into a single text
|
56 |
-
combined_text = "\n\n".join([
|
57 |
-
f"Title: {article.get('title', '')}\nContent: {article.get('snippet', '')}"
|
58 |
-
for article in articles
|
59 |
-
])
|
60 |
-
|
61 |
-
prompt = f"""Please perform an overall sentiment analysis of the following collection of news articles:
|
62 |
-
|
63 |
-
News content:
|
64 |
-
{combined_text}
|
65 |
-
|
66 |
-
Please follow this format:
|
67 |
-
1. Overall Sentiment: [Positive/Negative/Neutral]
|
68 |
-
2. Key Positive Factors:
|
69 |
-
- [Item1]
|
70 |
-
- [Item2]
|
71 |
-
3. Key Negative Factors:
|
72 |
-
- [Item1]
|
73 |
-
- [Item2]
|
74 |
-
4. Summary: [Detailed explanation]
|
75 |
-
"""
|
76 |
-
|
77 |
-
response = client.chat.completions.create(
|
78 |
-
model="CohereForAI/c4ai-command-r-plus-08-2024",
|
79 |
-
messages=[{"role": "user", "content": prompt}],
|
80 |
-
temperature=0.3,
|
81 |
-
max_tokens=1000
|
82 |
-
)
|
83 |
-
|
84 |
-
return response.choices[0].message.content
|
85 |
-
except Exception as e:
|
86 |
-
return f"Sentiment analysis failed: {str(e)}"
|
87 |
-
|
88 |
-
|
89 |
-
# Initialize the database
|
90 |
-
def init_db():
|
91 |
-
"""
|
92 |
-
Initialize the SQLite database (search_results.db) if it doesn't already exist.
|
93 |
-
"""
|
94 |
-
db_path = pathlib.Path("search_results.db")
|
95 |
-
conn = sqlite3.connect(db_path)
|
96 |
-
c = conn.cursor()
|
97 |
-
c.execute('''CREATE TABLE IF NOT EXISTS searches
|
98 |
-
(id INTEGER PRIMARY KEY AUTOINCREMENT,
|
99 |
-
keyword TEXT,
|
100 |
-
country TEXT,
|
101 |
-
results TEXT,
|
102 |
-
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP)''')
|
103 |
-
conn.commit()
|
104 |
-
conn.close()
|
105 |
-
|
106 |
-
def save_to_db(keyword, country, results):
|
107 |
-
"""
|
108 |
-
Save the search results for a specific (keyword, country) combination into the database.
|
109 |
-
"""
|
110 |
-
conn = sqlite3.connect("search_results.db")
|
111 |
-
c = conn.cursor()
|
112 |
-
seoul_tz = pytz.timezone('Asia/Seoul')
|
113 |
-
now = datetime.now(seoul_tz)
|
114 |
-
timestamp = now.strftime('%Y-%m-%d %H:%M:%S')
|
115 |
-
|
116 |
-
c.execute("""INSERT INTO searches
|
117 |
-
(keyword, country, results, timestamp)
|
118 |
-
VALUES (?, ?, ?, ?)""",
|
119 |
-
(keyword, country, json.dumps(results), timestamp))
|
120 |
-
conn.commit()
|
121 |
-
conn.close()
|
122 |
-
|
123 |
-
def load_from_db(keyword, country):
|
124 |
-
"""
|
125 |
-
Load the most recent search results for a specific (keyword, country) combination from the database.
|
126 |
-
Returns the data and the timestamp.
|
127 |
-
"""
|
128 |
-
conn = sqlite3.connect("search_results.db")
|
129 |
-
c = conn.cursor()
|
130 |
-
c.execute(
|
131 |
-
"SELECT results, timestamp FROM searches WHERE keyword=? AND country=? ORDER BY timestamp DESC LIMIT 1",
|
132 |
-
(keyword, country)
|
133 |
-
)
|
134 |
-
result = c.fetchone()
|
135 |
-
conn.close()
|
136 |
-
if result:
|
137 |
-
return json.loads(result[0]), convert_to_seoul_time(result[1])
|
138 |
-
return None, None
|
139 |
-
|
140 |
-
def display_results(articles):
|
141 |
-
"""
|
142 |
-
Convert a list of news articles into a Markdown string for display.
|
143 |
-
"""
|
144 |
-
output = ""
|
145 |
-
for idx, article in enumerate(articles, 1):
|
146 |
-
output += f"### {idx}. {article['title']}\n"
|
147 |
-
output += f"Source: {article['channel']}\n"
|
148 |
-
output += f"Time: {article['time']}\n"
|
149 |
-
output += f"Link: {article['link']}\n"
|
150 |
-
output += f"Summary: {article['snippet']}\n\n"
|
151 |
-
return output
|
152 |
-
|
153 |
-
|
154 |
-
########################################
|
155 |
-
# 1) Search => Articles + Analysis, then save to DB
|
156 |
-
########################################
|
157 |
-
def search_company(company):
|
158 |
-
"""
|
159 |
-
For a single company (or keyword), search US news.
|
160 |
-
1) Retrieve a list of articles
|
161 |
-
2) Perform sentiment analysis
|
162 |
-
3) Save results to DB
|
163 |
-
4) Return (articles + analysis) in a single output.
|
164 |
-
"""
|
165 |
-
error_message, articles = serphouse_search(company, "United States")
|
166 |
-
if not error_message and articles:
|
167 |
-
# Perform sentiment analysis
|
168 |
-
analysis = analyze_sentiment_batch(articles, client)
|
169 |
-
|
170 |
-
# Prepare data to save in DB
|
171 |
-
store_dict = {
|
172 |
-
"articles": articles,
|
173 |
-
"analysis": analysis
|
174 |
-
}
|
175 |
-
save_to_db(company, "United States", store_dict)
|
176 |
-
|
177 |
-
# Prepare output for display
|
178 |
-
output = display_results(articles)
|
179 |
-
output += f"\n\n### Analysis Report\n{analysis}\n"
|
180 |
-
return output
|
181 |
-
return f"No search results found for {company}."
|
182 |
-
|
183 |
-
########################################
|
184 |
-
# 2) Load => Return articles + analysis from DB
|
185 |
-
########################################
|
186 |
-
def load_company(company):
|
187 |
-
"""
|
188 |
-
Load the most recent US news search results for the given company (or keyword) from the database,
|
189 |
-
and return the articles + analysis in a single output.
|
190 |
-
"""
|
191 |
-
data, timestamp = load_from_db(company, "United States")
|
192 |
-
if data:
|
193 |
-
articles = data.get("articles", [])
|
194 |
-
analysis = data.get("analysis", "")
|
195 |
-
|
196 |
-
output = f"### {company} Search Results\nLast Updated: {timestamp}\n\n"
|
197 |
-
output += display_results(articles)
|
198 |
-
output += f"\n\n### Analysis Report\n{analysis}\n"
|
199 |
-
return output
|
200 |
-
return f"No saved results for {company}."
|
201 |
-
|
202 |
-
|
203 |
-
########################################
|
204 |
-
# 3) Updated show_stats() with new title
|
205 |
-
########################################
|
206 |
-
def show_stats():
|
207 |
-
"""
|
208 |
-
For each company in KOREAN_COMPANIES:
|
209 |
-
- Retrieve the most recent timestamp in DB
|
210 |
-
- Number of articles
|
211 |
-
- Sentiment analysis result
|
212 |
-
Return these in a report format.
|
213 |
-
|
214 |
-
Title changed to: "EarnBOT Analysis Report"
|
215 |
-
"""
|
216 |
-
conn = sqlite3.connect("search_results.db")
|
217 |
-
c = conn.cursor()
|
218 |
-
|
219 |
-
output = "## EarnBOT Analysis Report\n\n"
|
220 |
-
|
221 |
-
data_list = []
|
222 |
-
for company in KOREAN_COMPANIES:
|
223 |
-
c.execute("""
|
224 |
-
SELECT results, timestamp
|
225 |
-
FROM searches
|
226 |
-
WHERE keyword = ?
|
227 |
-
ORDER BY timestamp DESC
|
228 |
-
LIMIT 1
|
229 |
-
""", (company,))
|
230 |
-
|
231 |
-
row = c.fetchone()
|
232 |
-
if row:
|
233 |
-
results_json, timestamp = row
|
234 |
-
data_list.append((company, timestamp, results_json))
|
235 |
-
|
236 |
-
conn.close()
|
237 |
-
|
238 |
-
def analyze_data(item):
|
239 |
-
comp, tstamp, results_json = item
|
240 |
-
data = json.loads(results_json)
|
241 |
-
articles = data.get("articles", [])
|
242 |
-
analysis = data.get("analysis", "")
|
243 |
-
|
244 |
-
count_articles = len(articles)
|
245 |
-
return (comp, tstamp, count_articles, analysis)
|
246 |
-
|
247 |
-
results_list = []
|
248 |
-
with ThreadPoolExecutor(max_workers=5) as executor:
|
249 |
-
futures = [executor.submit(analyze_data, dl) for dl in data_list]
|
250 |
-
for future in as_completed(futures):
|
251 |
-
results_list.append(future.result())
|
252 |
-
|
253 |
-
for comp, tstamp, count, analysis in results_list:
|
254 |
-
seoul_time = convert_to_seoul_time(tstamp)
|
255 |
-
output += f"### {comp}\n"
|
256 |
-
output += f"- Last updated: {seoul_time}\n"
|
257 |
-
output += f"- Number of articles stored: {count}\n\n"
|
258 |
-
if analysis:
|
259 |
-
output += "#### News Sentiment Analysis\n"
|
260 |
-
output += f"{analysis}\n\n"
|
261 |
-
output += "---\n\n"
|
262 |
-
|
263 |
-
return output
|
264 |
-
|
265 |
-
|
266 |
-
def search_all_companies():
|
267 |
-
"""
|
268 |
-
Search all companies in KOREAN_COMPANIES (in parallel),
|
269 |
-
perform sentiment analysis + save to DB => return Markdown of all results.
|
270 |
-
"""
|
271 |
-
overall_result = "# [Search Results for All Companies]\n\n"
|
272 |
-
|
273 |
-
def do_search(comp):
|
274 |
-
return comp, search_company(comp)
|
275 |
-
|
276 |
-
with ThreadPoolExecutor(max_workers=5) as executor:
|
277 |
-
futures = [executor.submit(do_search, c) for c in KOREAN_COMPANIES]
|
278 |
-
for future in as_completed(futures):
|
279 |
-
comp, res_text = future.result()
|
280 |
-
overall_result += f"## {comp}\n"
|
281 |
-
overall_result += res_text + "\n\n"
|
282 |
-
|
283 |
-
return overall_result
|
284 |
-
|
285 |
-
def load_all_companies():
|
286 |
-
"""
|
287 |
-
Load articles + analysis for all companies in KOREAN_COMPANIES from the DB => return Markdown.
|
288 |
-
"""
|
289 |
-
overall_result = "# [All Companies Data Output]\n\n"
|
290 |
-
|
291 |
-
for comp in KOREAN_COMPANIES:
|
292 |
-
overall_result += f"## {comp}\n"
|
293 |
-
overall_result += load_company(comp)
|
294 |
-
overall_result += "\n"
|
295 |
-
return overall_result
|
296 |
-
|
297 |
-
def full_summary_report():
|
298 |
-
"""
|
299 |
-
1) Search all companies (in parallel) -> 2) Load results -> 3) Show sentiment analysis stats
|
300 |
-
Return a combined report with all three steps.
|
301 |
-
"""
|
302 |
-
# 1) Search all companies => store to DB
|
303 |
-
search_result_text = search_all_companies()
|
304 |
-
|
305 |
-
# 2) Load all results => from DB
|
306 |
-
load_result_text = load_all_companies()
|
307 |
-
|
308 |
-
# 3) Show stats => EarnBOT Analysis Report
|
309 |
-
stats_text = show_stats()
|
310 |
-
|
311 |
-
combined_report = (
|
312 |
-
"# Full Analysis Summary Report\n\n"
|
313 |
-
"Executed in the following order:\n"
|
314 |
-
"1. Search all companies (parallel) + sentiment analysis => 2. Load results from DB => 3. Show overall sentiment analysis stats\n\n"
|
315 |
-
f"{search_result_text}\n\n"
|
316 |
-
f"{load_result_text}\n\n"
|
317 |
-
"## [Overall Sentiment Analysis Stats]\n\n"
|
318 |
-
f"{stats_text}"
|
319 |
-
)
|
320 |
-
return combined_report
|
321 |
-
|
322 |
-
|
323 |
-
########################################
|
324 |
-
# Additional feature: User custom search
|
325 |
-
########################################
|
326 |
-
def search_custom(query, country):
|
327 |
-
"""
|
328 |
-
For a user-provided (query, country):
|
329 |
-
1) Search + sentiment analysis => save to DB
|
330 |
-
2) Load from DB => display articles + analysis
|
331 |
-
"""
|
332 |
-
error_message, articles = serphouse_search(query, country)
|
333 |
-
if error_message:
|
334 |
-
return f"An error occurred: {error_message}"
|
335 |
-
if not articles:
|
336 |
-
return "No results were found for your query."
|
337 |
-
|
338 |
-
# 1) Perform analysis
|
339 |
-
analysis = analyze_sentiment_batch(articles, client)
|
340 |
-
|
341 |
-
# 2) Save to DB
|
342 |
-
save_data = {
|
343 |
-
"articles": articles,
|
344 |
-
"analysis": analysis
|
345 |
-
}
|
346 |
-
save_to_db(query, country, save_data)
|
347 |
-
|
348 |
-
# 3) Reload from DB
|
349 |
-
loaded_data, timestamp = load_from_db(query, country)
|
350 |
-
if not loaded_data:
|
351 |
-
return "Failed to load data from DB."
|
352 |
-
|
353 |
-
# 4) Prepare final output
|
354 |
-
out = f"## [Custom Search Results]\n\n"
|
355 |
-
out += f"**Keyword**: {query}\n\n"
|
356 |
-
out += f"**Country**: {country}\n\n"
|
357 |
-
out += f"**Timestamp**: {timestamp}\n\n"
|
358 |
-
|
359 |
-
arts = loaded_data.get("articles", [])
|
360 |
-
analy = loaded_data.get("analysis", "")
|
361 |
-
|
362 |
-
out += display_results(arts)
|
363 |
-
out += f"### News Sentiment Analysis\n{analy}\n"
|
364 |
-
|
365 |
-
return out
|
366 |
-
|
367 |
-
|
368 |
-
########################################
|
369 |
-
# API Authentication
|
370 |
-
########################################
|
371 |
-
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
372 |
-
if not ACCESS_TOKEN:
|
373 |
-
raise ValueError("HF_TOKEN environment variable is not set")
|
374 |
-
|
375 |
-
client = OpenAI(
|
376 |
-
base_url="https://api-inference.huggingface.co/v1/",
|
377 |
-
api_key=ACCESS_TOKEN,
|
378 |
-
)
|
379 |
-
|
380 |
-
API_KEY = os.getenv("SERPHOUSE_API_KEY")
|
381 |
-
|
382 |
-
|
383 |
-
########################################
|
384 |
-
# Country-specific settings
|
385 |
-
########################################
|
386 |
-
COUNTRY_LANGUAGES = {
|
387 |
-
"United States": "en",
|
388 |
-
"KOREA": "ko",
|
389 |
-
"United Kingdom": "en",
|
390 |
-
"Taiwan": "zh-TW",
|
391 |
-
"Canada": "en",
|
392 |
-
"Australia": "en",
|
393 |
-
"Germany": "de",
|
394 |
-
"France": "fr",
|
395 |
-
"Japan": "ja",
|
396 |
-
"China": "zh",
|
397 |
-
"India": "hi",
|
398 |
-
"Brazil": "pt",
|
399 |
-
"Mexico": "es",
|
400 |
-
"Russia": "ru",
|
401 |
-
"Italy": "it",
|
402 |
-
"Spain": "es",
|
403 |
-
"Netherlands": "nl",
|
404 |
-
"Singapore": "en",
|
405 |
-
"Hong Kong": "zh-HK",
|
406 |
-
"Indonesia": "id",
|
407 |
-
"Malaysia": "ms",
|
408 |
-
"Philippines": "tl",
|
409 |
-
"Thailand": "th",
|
410 |
-
"Vietnam": "vi",
|
411 |
-
"Belgium": "nl",
|
412 |
-
"Denmark": "da",
|
413 |
-
"Finland": "fi",
|
414 |
-
"Ireland": "en",
|
415 |
-
"Norway": "no",
|
416 |
-
"Poland": "pl",
|
417 |
-
"Sweden": "sv",
|
418 |
-
"Switzerland": "de",
|
419 |
-
"Austria": "de",
|
420 |
-
"Czech Republic": "cs",
|
421 |
-
"Greece": "el",
|
422 |
-
"Hungary": "hu",
|
423 |
-
"Portugal": "pt",
|
424 |
-
"Romania": "ro",
|
425 |
-
"Turkey": "tr",
|
426 |
-
"Israel": "he",
|
427 |
-
"Saudi Arabia": "ar",
|
428 |
-
"United Arab Emirates": "ar",
|
429 |
-
"South Africa": "en",
|
430 |
-
"Argentina": "es",
|
431 |
-
"Chile": "es",
|
432 |
-
"Colombia": "es",
|
433 |
-
"Peru": "es",
|
434 |
-
"Venezuela": "es",
|
435 |
-
"New Zealand": "en",
|
436 |
-
"Bangladesh": "bn",
|
437 |
-
"Pakistan": "ur",
|
438 |
-
"Egypt": "ar",
|
439 |
-
"Morocco": "ar",
|
440 |
-
"Nigeria": "en",
|
441 |
-
"Kenya": "sw",
|
442 |
-
"Ukraine": "uk",
|
443 |
-
"Croatia": "hr",
|
444 |
-
"Slovakia": "sk",
|
445 |
-
"Bulgaria": "bg",
|
446 |
-
"Serbia": "sr",
|
447 |
-
"Estonia": "et",
|
448 |
-
"Latvia": "lv",
|
449 |
-
"Lithuania": "lt",
|
450 |
-
"Slovenia": "sl",
|
451 |
-
"Luxembourg": "Luxembourg",
|
452 |
-
"Malta": "Malta",
|
453 |
-
"Cyprus": "Cyprus",
|
454 |
-
"Iceland": "Iceland"
|
455 |
-
}
|
456 |
-
|
457 |
-
COUNTRY_LOCATIONS = {
|
458 |
-
"United States": "United States",
|
459 |
-
"KOREA": "kr",
|
460 |
-
"United Kingdom": "United Kingdom",
|
461 |
-
"Taiwan": "Taiwan",
|
462 |
-
"Canada": "Canada",
|
463 |
-
"Australia": "Australia",
|
464 |
-
"Germany": "Germany",
|
465 |
-
"France": "France",
|
466 |
-
"Japan": "Japan",
|
467 |
-
"China": "China",
|
468 |
-
"India": "India",
|
469 |
-
"Brazil": "Brazil",
|
470 |
-
"Mexico": "Mexico",
|
471 |
-
"Russia": "Russia",
|
472 |
-
"Italy": "Italy",
|
473 |
-
"Spain": "Spain",
|
474 |
-
"Netherlands": "Netherlands",
|
475 |
-
"Singapore": "Singapore",
|
476 |
-
"Hong Kong": "Hong Kong",
|
477 |
-
"Indonesia": "Indonesia",
|
478 |
-
"Malaysia": "Malaysia",
|
479 |
-
"Philippines": "Philippines",
|
480 |
-
"Thailand": "Thailand",
|
481 |
-
"Vietnam": "Vietnam",
|
482 |
-
"Belgium": "Belgium",
|
483 |
-
"Denmark": "Denmark",
|
484 |
-
"Finland": "Finland",
|
485 |
-
"Ireland": "Ireland",
|
486 |
-
"Norway": "Norway",
|
487 |
-
"Poland": "Poland",
|
488 |
-
"Sweden": "Sweden",
|
489 |
-
"Switzerland": "Switzerland",
|
490 |
-
"Austria": "Austria",
|
491 |
-
"Czech Republic": "Czech Republic",
|
492 |
-
"Greece": "Greece",
|
493 |
-
"Hungary": "Hungary",
|
494 |
-
"Portugal": "Portugal",
|
495 |
-
"Romania": "Romania",
|
496 |
-
"Turkey": "Turkey",
|
497 |
-
"Israel": "Israel",
|
498 |
-
"Saudi Arabia": "Saudi Arabia",
|
499 |
-
"United Arab Emirates": "United Arab Emirates",
|
500 |
-
"South Africa": "South Africa",
|
501 |
-
"Argentina": "Argentina",
|
502 |
-
"Chile": "Chile",
|
503 |
-
"Colombia": "Colombia",
|
504 |
-
"Peru": "Peru",
|
505 |
-
"Venezuela": "Venezuela",
|
506 |
-
"New Zealand": "New Zealand",
|
507 |
-
"Bangladesh": "Bangladesh",
|
508 |
-
"Pakistan": "Pakistan",
|
509 |
-
"Egypt": "Egypt",
|
510 |
-
"Morocco": "Morocco",
|
511 |
-
"Nigeria": "Nigeria",
|
512 |
-
"Kenya": "Kenya",
|
513 |
-
"Ukraine": "Ukraine",
|
514 |
-
"Croatia": "Croatia",
|
515 |
-
"Slovakia": "Slovakia",
|
516 |
-
"Bulgaria": "Bulgaria",
|
517 |
-
"Serbia": "Serbia",
|
518 |
-
"Estonia": "et",
|
519 |
-
"Latvia": "lv",
|
520 |
-
"Lithuania": "lt",
|
521 |
-
"Slovenia": "sl",
|
522 |
-
"Luxembourg": "Luxembourg",
|
523 |
-
"Malta": "Malta",
|
524 |
-
"Cyprus": "Cyprus",
|
525 |
-
"Iceland": "Iceland"
|
526 |
-
}
|
527 |
-
|
528 |
-
|
529 |
-
@lru_cache(maxsize=100)
|
530 |
-
def translate_query(query, country):
|
531 |
-
"""
|
532 |
-
Use the unofficial Google Translation API to translate the query into the target country's language.
|
533 |
-
If the query is already in English, or if translation fails, return the original query.
|
534 |
-
"""
|
535 |
-
try:
|
536 |
-
if is_english(query):
|
537 |
-
return query
|
538 |
-
|
539 |
-
if country in COUNTRY_LANGUAGES:
|
540 |
-
if country == "South Korea":
|
541 |
-
return query
|
542 |
-
target_lang = COUNTRY_LANGUAGES[country]
|
543 |
-
|
544 |
-
url = "https://translate.googleapis.com/translate_a/single"
|
545 |
-
params = {
|
546 |
-
"client": "gtx",
|
547 |
-
"sl": "auto",
|
548 |
-
"tl": target_lang,
|
549 |
-
"dt": "t",
|
550 |
-
"q": query
|
551 |
-
}
|
552 |
-
|
553 |
-
session = requests.Session()
|
554 |
-
retries = Retry(total=3, backoff_factor=0.5)
|
555 |
-
session.mount('https://', HTTPAdapter(max_retries=retries))
|
556 |
-
|
557 |
-
response = session.get(url, params=params, timeout=(5, 10))
|
558 |
-
translated_text = response.json()[0][0][0]
|
559 |
-
return translated_text
|
560 |
-
return query
|
561 |
-
|
562 |
-
except Exception as e:
|
563 |
-
print(f"Translation error: {str(e)}")
|
564 |
-
return query
|
565 |
-
|
566 |
-
def is_english(text):
|
567 |
-
"""
|
568 |
-
Check if a string is (mostly) English by verifying character code ranges.
|
569 |
-
"""
|
570 |
-
return all(ord(char) < 128 for char in text.replace(' ', '').replace('-', '').replace('_', ''))
|
571 |
-
|
572 |
-
def search_serphouse(query, country, page=1, num_result=10):
|
573 |
-
"""
|
574 |
-
Send a real-time search request to the SerpHouse API,
|
575 |
-
specifying the 'news' tab (sort_by=date) for the given query.
|
576 |
-
Returns a dict with 'results' or 'error'.
|
577 |
-
"""
|
578 |
-
url = "https://api.serphouse.com/serp/live"
|
579 |
-
|
580 |
-
now = datetime.utcnow()
|
581 |
-
yesterday = now - timedelta(days=1)
|
582 |
-
date_range = f"{yesterday.strftime('%Y-%m-%d')},{now.strftime('%Y-%m-%d')}"
|
583 |
-
|
584 |
-
translated_query = translate_query(query, country)
|
585 |
-
|
586 |
-
payload = {
|
587 |
-
"data": {
|
588 |
-
"q": translated_query,
|
589 |
-
"domain": "google.com",
|
590 |
-
"loc": COUNTRY_LOCATIONS.get(country, "United States"),
|
591 |
-
"lang": COUNTRY_LANGUAGES.get(country, "en"),
|
592 |
-
"device": "desktop",
|
593 |
-
"serp_type": "news",
|
594 |
-
"page": str(page),
|
595 |
-
"num": "100",
|
596 |
-
"date_range": date_range,
|
597 |
-
"sort_by": "date"
|
598 |
-
}
|
599 |
-
}
|
600 |
-
|
601 |
-
headers = {
|
602 |
-
"accept": "application/json",
|
603 |
-
"content-type": "application/json",
|
604 |
-
"authorization": f"Bearer {API_KEY}"
|
605 |
-
}
|
606 |
-
|
607 |
-
try:
|
608 |
-
session = requests.Session()
|
609 |
-
|
610 |
-
retries = Retry(
|
611 |
-
total=5,
|
612 |
-
backoff_factor=1,
|
613 |
-
status_forcelist=[500, 502, 503, 504, 429],
|
614 |
-
allowed_methods=["POST"]
|
615 |
-
)
|
616 |
-
|
617 |
-
adapter = HTTPAdapter(max_retries=retries)
|
618 |
-
session.mount('http://', adapter)
|
619 |
-
session.mount('https://', adapter)
|
620 |
-
|
621 |
-
response = session.post(
|
622 |
-
url,
|
623 |
-
json=payload,
|
624 |
-
headers=headers,
|
625 |
-
timeout=(30, 30)
|
626 |
-
)
|
627 |
-
|
628 |
-
response.raise_for_status()
|
629 |
-
return {"results": response.json(), "translated_query": translated_query}
|
630 |
-
|
631 |
-
except requests.exceptions.Timeout:
|
632 |
-
return {
|
633 |
-
"error": "Search timed out. Please try again later.",
|
634 |
-
"translated_query": query
|
635 |
-
}
|
636 |
-
except requests.exceptions.RequestException as e:
|
637 |
-
return {
|
638 |
-
"error": f"Error during search: {str(e)}",
|
639 |
-
"translated_query": query
|
640 |
-
}
|
641 |
-
except Exception as e:
|
642 |
-
return {
|
643 |
-
"error": f"Unexpected error occurred: {str(e)}",
|
644 |
-
"translated_query": query
|
645 |
-
}
|
646 |
-
|
647 |
-
def format_results_from_raw(response_data):
|
648 |
-
"""
|
649 |
-
Process the SerpHouse API response data and return (error_message, article_list).
|
650 |
-
"""
|
651 |
-
if "error" in response_data:
|
652 |
-
return "Error: " + response_data["error"], []
|
653 |
-
|
654 |
-
try:
|
655 |
-
results = response_data["results"]
|
656 |
-
translated_query = response_data["translated_query"]
|
657 |
-
|
658 |
-
news_results = results.get('results', {}).get('results', {}).get('news', [])
|
659 |
-
if not news_results:
|
660 |
-
return "No search results found.", []
|
661 |
-
|
662 |
-
# Filter out Korean domains and Korean keywords (example filtering)
|
663 |
-
korean_domains = [
|
664 |
-
'.kr', 'korea', 'korean', 'yonhap', 'hankyung', 'chosun',
|
665 |
-
'donga', 'joins', 'hani', 'koreatimes', 'koreaherald'
|
666 |
-
]
|
667 |
-
korean_keywords = [
|
668 |
-
'korea', 'korean', 'seoul', 'busan', 'incheon', 'daegu',
|
669 |
-
'gwangju', 'daejeon', 'ulsan', 'sejong'
|
670 |
-
]
|
671 |
-
|
672 |
-
filtered_articles = []
|
673 |
-
for idx, result in enumerate(news_results, 1):
|
674 |
-
url = result.get("url", result.get("link", "")).lower()
|
675 |
-
title = result.get("title", "").lower()
|
676 |
-
channel = result.get("channel", result.get("source", "")).lower()
|
677 |
-
|
678 |
-
is_korean_content = (
|
679 |
-
any(domain in url or domain in channel for domain in korean_domains) or
|
680 |
-
any(keyword in title for keyword in korean_keywords)
|
681 |
-
)
|
682 |
-
|
683 |
-
# Exclude Korean content
|
684 |
-
if not is_korean_content:
|
685 |
-
filtered_articles.append({
|
686 |
-
"index": idx,
|
687 |
-
"title": result.get("title", "No Title"),
|
688 |
-
"link": url,
|
689 |
-
"snippet": result.get("snippet", "No Content"),
|
690 |
-
"channel": result.get("channel", result.get("source", "Unknown")),
|
691 |
-
"time": result.get("time", result.get("date", "Unknown Time")),
|
692 |
-
"image_url": result.get("img", result.get("thumbnail", "")),
|
693 |
-
"translated_query": translated_query
|
694 |
-
})
|
695 |
-
|
696 |
-
return "", filtered_articles
|
697 |
-
except Exception as e:
|
698 |
-
return f"Error processing results: {str(e)}", []
|
699 |
-
|
700 |
-
def serphouse_search(query, country):
|
701 |
-
"""
|
702 |
-
Helper function to search and then format results.
|
703 |
-
Returns (error_message, article_list).
|
704 |
-
"""
|
705 |
-
response_data = search_serphouse(query, country)
|
706 |
-
return format_results_from_raw(response_data)
|
707 |
-
|
708 |
-
|
709 |
-
# Refined, modern, and sleek custom CSS
|
710 |
-
css = """
|
711 |
-
body {
|
712 |
-
background: linear-gradient(to bottom right, #f9fafb, #ffffff);
|
713 |
-
font-family: 'Arial', sans-serif;
|
714 |
-
}
|
715 |
-
|
716 |
-
/* Hide default Gradio footer */
|
717 |
-
footer {
|
718 |
-
visibility: hidden;
|
719 |
-
}
|
720 |
-
|
721 |
-
/* Header/Status area */
|
722 |
-
#status_area {
|
723 |
-
background: rgba(255, 255, 255, 0.9);
|
724 |
-
padding: 15px;
|
725 |
-
border-bottom: 1px solid #ddd;
|
726 |
-
margin-bottom: 20px;
|
727 |
-
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
|
728 |
-
}
|
729 |
-
|
730 |
-
/* Results area */
|
731 |
-
#results_area {
|
732 |
-
padding: 10px;
|
733 |
-
margin-top: 10px;
|
734 |
-
}
|
735 |
-
|
736 |
-
/* Tabs style */
|
737 |
-
.tabs {
|
738 |
-
border-bottom: 2px solid #ddd !important;
|
739 |
-
margin-bottom: 20px !important;
|
740 |
-
}
|
741 |
-
|
742 |
-
.tab-nav {
|
743 |
-
border-bottom: none !important;
|
744 |
-
margin-bottom: 0 !important;
|
745 |
-
}
|
746 |
-
|
747 |
-
.tab-nav button {
|
748 |
-
font-weight: bold !important;
|
749 |
-
padding: 10px 20px !important;
|
750 |
-
background-color: #f0f0f0 !important;
|
751 |
-
border: 1px solid #ccc !important;
|
752 |
-
border-radius: 5px !important;
|
753 |
-
margin-right: 5px !important;
|
754 |
-
}
|
755 |
-
|
756 |
-
.tab-nav button.selected {
|
757 |
-
border-bottom: 2px solid #1f77b4 !important;
|
758 |
-
background-color: #e6f2fa !important;
|
759 |
-
color: #1f77b4 !important;
|
760 |
-
}
|
761 |
-
|
762 |
-
/* Status message styling */
|
763 |
-
#status_area .markdown-text {
|
764 |
-
font-size: 1.1em;
|
765 |
-
color: #2c3e50;
|
766 |
-
padding: 10px 0;
|
767 |
-
}
|
768 |
-
|
769 |
-
/* Main container grouping */
|
770 |
-
.group {
|
771 |
-
border: 1px solid #eee;
|
772 |
-
padding: 15px;
|
773 |
-
margin-bottom: 15px;
|
774 |
-
border-radius: 5px;
|
775 |
-
background: white;
|
776 |
-
transition: all 0.3s ease;
|
777 |
-
opacity: 0;
|
778 |
-
transform: translateY(20px);
|
779 |
-
}
|
780 |
-
.group.visible {
|
781 |
-
opacity: 1;
|
782 |
-
transform: translateY(0);
|
783 |
-
}
|
784 |
-
|
785 |
-
/* Buttons */
|
786 |
-
.primary-btn {
|
787 |
-
background: #1f77b4 !important;
|
788 |
-
border: none !important;
|
789 |
-
color: #fff !important;
|
790 |
-
border-radius: 5px !important;
|
791 |
-
padding: 10px 20px !important;
|
792 |
-
cursor: pointer !important;
|
793 |
-
}
|
794 |
-
.primary-btn:hover {
|
795 |
-
background: #155a8c !important;
|
796 |
-
}
|
797 |
-
|
798 |
-
.secondary-btn {
|
799 |
-
background: #f0f0f0 !important;
|
800 |
-
border: 1px solid #ccc !important;
|
801 |
-
color: #333 !important;
|
802 |
-
border-radius: 5px !important;
|
803 |
-
padding: 10px 20px !important;
|
804 |
-
cursor: pointer !important;
|
805 |
-
}
|
806 |
-
.secondary-btn:hover {
|
807 |
-
background: #e0e0e0 !important;
|
808 |
-
}
|
809 |
-
|
810 |
-
/* Input fields */
|
811 |
-
.textbox {
|
812 |
-
border: 1px solid #ddd !important;
|
813 |
-
border-radius: 4px !important;
|
814 |
-
}
|
815 |
-
|
816 |
-
/* Progress bar container */
|
817 |
-
.progress-container {
|
818 |
-
position: fixed;
|
819 |
-
top: 0;
|
820 |
-
left: 0;
|
821 |
-
width: 100%;
|
822 |
-
height: 6px;
|
823 |
-
background: #e0e0e0;
|
824 |
-
z-index: 1000;
|
825 |
-
}
|
826 |
-
|
827 |
-
/* Progress bar */
|
828 |
-
.progress-bar {
|
829 |
-
height: 100%;
|
830 |
-
background: linear-gradient(90deg, #2196F3, #00BCD4);
|
831 |
-
box-shadow: 0 0 10px rgba(33, 150, 243, 0.5);
|
832 |
-
transition: width 0.3s ease;
|
833 |
-
animation: progress-glow 1.5s ease-in-out infinite;
|
834 |
-
}
|
835 |
-
|
836 |
-
/* Progress text */
|
837 |
-
.progress-text {
|
838 |
-
position: fixed;
|
839 |
-
top: 8px;
|
840 |
-
left: 50%;
|
841 |
-
transform: translateX(-50%);
|
842 |
-
background: #333;
|
843 |
-
color: white;
|
844 |
-
padding: 4px 12px;
|
845 |
-
border-radius: 15px;
|
846 |
-
font-size: 14px;
|
847 |
-
z-index: 1001;
|
848 |
-
box-shadow: 0 2px 5px rgba(0,0,0,0.2);
|
849 |
-
}
|
850 |
-
|
851 |
-
/* Progress bar animation */
|
852 |
-
@keyframes progress-glow {
|
853 |
-
0% {
|
854 |
-
box-shadow: 0 0 5px rgba(33, 150, 243, 0.5);
|
855 |
-
}
|
856 |
-
50% {
|
857 |
-
box-shadow: 0 0 20px rgba(33, 150, 243, 0.8);
|
858 |
-
}
|
859 |
-
100% {
|
860 |
-
box-shadow: 0 0 5px rgba(33, 150, 243, 0.5);
|
861 |
-
}
|
862 |
-
}
|
863 |
-
|
864 |
-
/* Loading state */
|
865 |
-
.loading {
|
866 |
-
opacity: 0.7;
|
867 |
-
pointer-events: none;
|
868 |
-
transition: opacity 0.3s ease;
|
869 |
-
}
|
870 |
-
|
871 |
-
/* Responsive design for smaller screens */
|
872 |
-
@media (max-width: 768px) {
|
873 |
-
.group {
|
874 |
-
padding: 10px;
|
875 |
-
margin-bottom: 15px;
|
876 |
-
}
|
877 |
-
|
878 |
-
.progress-text {
|
879 |
-
font-size: 12px;
|
880 |
-
padding: 3px 10px;
|
881 |
-
}
|
882 |
-
}
|
883 |
-
|
884 |
-
/* Example section styling */
|
885 |
-
.examples-table {
|
886 |
-
margin-top: 10px !important;
|
887 |
-
margin-bottom: 20px !important;
|
888 |
-
}
|
889 |
-
|
890 |
-
.examples-table button {
|
891 |
-
background-color: #f0f0f0 !important;
|
892 |
-
border: 1px solid #ddd !important;
|
893 |
-
border-radius: 4px !important;
|
894 |
-
padding: 5px 10px !important;
|
895 |
-
margin: 2px !important;
|
896 |
-
transition: all 0.3s ease !important;
|
897 |
-
}
|
898 |
-
|
899 |
-
.examples-table button:hover {
|
900 |
-
background-color: #e0e0e0 !important;
|
901 |
-
transform: translateY(-1px) !important;
|
902 |
-
box-shadow: 0 2px 5px rgba(0,0,0,0.1) !important;
|
903 |
-
}
|
904 |
-
|
905 |
-
.examples-table .label {
|
906 |
-
font-weight: bold !important;
|
907 |
-
color: #444 !important;
|
908 |
-
margin-bottom: 5px !important;
|
909 |
-
}
|
910 |
-
"""
|
911 |
-
|
912 |
-
# --- Gradio Interface (UI portion only) ---
|
913 |
-
with gr.Blocks(css=css, title="NewsAI Service") as iface:
|
914 |
-
# Initialize the database first (keeping the call to init_db(), unchanged)
|
915 |
-
init_db()
|
916 |
-
|
917 |
-
gr.HTML("""<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fopenfree-MoneyRadar.hf.space">
|
918 |
-
<img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fopenfree-MoneyRadar.hf.space&countColor=%23263759" />
|
919 |
-
</a>""")
|
920 |
-
|
921 |
-
|
922 |
-
with gr.Tabs():
|
923 |
-
with gr.Tab("MoneyRadar"):
|
924 |
-
# Added usage instructions and feature explanations here:
|
925 |
-
gr.Markdown(
|
926 |
-
"""
|
927 |
-
## MoneyRadar: Implies scanning the market to spot money-making opportunities.
|
928 |
-
|
929 |
-
**How to Use This Service**:
|
930 |
-
1. **Custom Search**: Enter any keyword and choose a target country to fetch the latest news. The system automatically performs sentiment analysis and stores results in the database.
|
931 |
-
2. **Generate Full Analysis Summary Report**: This will automatically:
|
932 |
-
- Search all predefined companies (in parallel),
|
933 |
-
- Store the articles and sentiment analysis,
|
934 |
-
- Display a combined overall report.
|
935 |
-
3. **Individual Companies**:
|
936 |
-
- **Search**: Fetch and analyze the latest news from Google (for the chosen company).
|
937 |
-
- **Load from DB**: Retrieve the most recent saved news and sentiment analysis from the local database.
|
938 |
-
|
939 |
-
**Features**:
|
940 |
-
- **Real-time News Scraping**: Retrieves fresh articles from multiple regions.
|
941 |
-
- **Advanced Sentiment Analysis**: Uses state-of-the-art NLP models via the OpenAI API.
|
942 |
-
- **Data Persistence**: Automatically saves and retrieves search results in a local SQLite database for quick reference.
|
943 |
-
- **Flexible**: Ability to search any keyword/country or select from predefined Big Tech & finance-related terms.
|
944 |
-
|
945 |
-
0. **Community: https://discord.gg/openfreeai
|
946 |
-
---
|
947 |
-
"""
|
948 |
-
)
|
949 |
-
|
950 |
-
# User custom search section
|
951 |
-
with gr.Group():
|
952 |
-
gr.Markdown("### Custom Search")
|
953 |
-
with gr.Row():
|
954 |
-
with gr.Column():
|
955 |
-
user_input = gr.Textbox(
|
956 |
-
label="Enter your keyword",
|
957 |
-
placeholder="e.g., Apple, Samsung, etc.",
|
958 |
-
elem_classes="textbox"
|
959 |
-
)
|
960 |
-
with gr.Column():
|
961 |
-
country_selection = gr.Dropdown(
|
962 |
-
choices=list(COUNTRY_LOCATIONS.keys()),
|
963 |
-
value="United States",
|
964 |
-
label="Select Country"
|
965 |
-
)
|
966 |
-
with gr.Column():
|
967 |
-
custom_search_btn = gr.Button(
|
968 |
-
"Search",
|
969 |
-
variant="primary",
|
970 |
-
elem_classes="primary-btn"
|
971 |
-
)
|
972 |
-
|
973 |
-
custom_search_output = gr.Markdown()
|
974 |
-
|
975 |
-
custom_search_btn.click(
|
976 |
-
fn=search_custom,
|
977 |
-
inputs=[user_input, country_selection],
|
978 |
-
outputs=custom_search_output
|
979 |
-
)
|
980 |
-
|
981 |
-
# Button to generate a full report
|
982 |
-
with gr.Row():
|
983 |
-
full_report_btn = gr.Button(
|
984 |
-
"Generate Full Analysis Summary Report",
|
985 |
-
variant="primary",
|
986 |
-
elem_classes="primary-btn"
|
987 |
-
)
|
988 |
-
full_report_display = gr.Markdown()
|
989 |
-
|
990 |
-
full_report_btn.click(
|
991 |
-
fn=full_summary_report,
|
992 |
-
outputs=full_report_display
|
993 |
-
)
|
994 |
-
|
995 |
-
# Individual search/load for companies in KOREAN_COMPANIES
|
996 |
-
with gr.Column():
|
997 |
-
for i in range(0, len(KOREAN_COMPANIES), 2):
|
998 |
-
with gr.Row():
|
999 |
-
# Left column
|
1000 |
-
with gr.Column():
|
1001 |
-
company = KOREAN_COMPANIES[i]
|
1002 |
-
with gr.Group():
|
1003 |
-
gr.Markdown(f"### {company}")
|
1004 |
-
with gr.Row():
|
1005 |
-
search_btn = gr.Button(
|
1006 |
-
"Search",
|
1007 |
-
variant="primary",
|
1008 |
-
elem_classes="primary-btn"
|
1009 |
-
)
|
1010 |
-
load_btn = gr.Button(
|
1011 |
-
"Load from DB",
|
1012 |
-
variant="secondary",
|
1013 |
-
elem_classes="secondary-btn"
|
1014 |
-
)
|
1015 |
-
result_display = gr.Markdown()
|
1016 |
-
|
1017 |
-
search_btn.click(
|
1018 |
-
fn=lambda c=company: search_company(c),
|
1019 |
-
outputs=result_display
|
1020 |
-
)
|
1021 |
-
load_btn.click(
|
1022 |
-
fn=lambda c=company: load_company(c),
|
1023 |
-
outputs=result_display
|
1024 |
-
)
|
1025 |
-
|
1026 |
-
# Right column (if exists)
|
1027 |
-
if i + 1 < len(KOREAN_COMPANIES):
|
1028 |
-
with gr.Column():
|
1029 |
-
company = KOREAN_COMPANIES[i + 1]
|
1030 |
-
with gr.Group():
|
1031 |
-
gr.Markdown(f"### {company}")
|
1032 |
-
with gr.Row():
|
1033 |
-
search_btn = gr.Button(
|
1034 |
-
"Search",
|
1035 |
-
variant="primary",
|
1036 |
-
elem_classes="primary-btn"
|
1037 |
-
)
|
1038 |
-
load_btn = gr.Button(
|
1039 |
-
"Load from DB",
|
1040 |
-
variant="secondary",
|
1041 |
-
elem_classes="secondary-btn"
|
1042 |
-
)
|
1043 |
-
result_display = gr.Markdown()
|
1044 |
-
|
1045 |
-
search_btn.click(
|
1046 |
-
fn=lambda c=company: search_company(c),
|
1047 |
-
outputs=result_display
|
1048 |
-
)
|
1049 |
-
load_btn.click(
|
1050 |
-
fn=lambda c=company: load_company(c),
|
1051 |
-
outputs=result_display
|
1052 |
-
)
|
1053 |
-
|
1054 |
-
# Launch the Gradio interface
|
1055 |
-
iface.launch(
|
1056 |
-
server_name="0.0.0.0",
|
1057 |
-
server_port=7860,
|
1058 |
-
share=True,
|
1059 |
-
ssl_verify=False,
|
1060 |
-
show_error=True
|
1061 |
-
)
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
exec(os.environ.get('APP'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|