Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,1011 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import requests
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
from datetime import datetime, timedelta
|
6 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
7 |
+
from functools import lru_cache
|
8 |
+
from requests.adapters import HTTPAdapter
|
9 |
+
from requests.packages.urllib3.util.retry import Retry
|
10 |
+
from openai import OpenAI
|
11 |
+
from bs4 import BeautifulSoup
|
12 |
+
import re
|
13 |
+
import pathlib
|
14 |
+
import sqlite3
|
15 |
+
import pytz
|
16 |
+
|
17 |
+
# List of target companies/keywords
|
18 |
+
KOREAN_COMPANIES = [
|
19 |
+
"NVIDIA",
|
20 |
+
"ALPHABET",
|
21 |
+
"APPLE",
|
22 |
+
"TESLA",
|
23 |
+
"AMAZON",
|
24 |
+
"MICROSOFT",
|
25 |
+
"META",
|
26 |
+
"INTEL",
|
27 |
+
"SAMSUNG",
|
28 |
+
"HYNIX",
|
29 |
+
"BITCOIN",
|
30 |
+
"crypto",
|
31 |
+
"stock",
|
32 |
+
"Economics",
|
33 |
+
"Finance",
|
34 |
+
"investing"
|
35 |
+
]
|
36 |
+
|
37 |
+
def convert_to_seoul_time(timestamp_str):
|
38 |
+
"""
|
39 |
+
Convert a given timestamp string (UTC) to Seoul time (KST).
|
40 |
+
"""
|
41 |
+
try:
|
42 |
+
dt = datetime.strptime(timestamp_str, '%Y-%m-%d %H:%M:%S')
|
43 |
+
seoul_tz = pytz.timezone('Asia/Seoul')
|
44 |
+
seoul_time = seoul_tz.localize(dt)
|
45 |
+
return seoul_time.strftime('%Y-%m-%d %H:%M:%S KST')
|
46 |
+
except Exception as e:
|
47 |
+
print(f"Time conversion error: {str(e)}")
|
48 |
+
return timestamp_str
|
49 |
+
|
50 |
+
def analyze_sentiment_batch(articles, client):
|
51 |
+
"""
|
52 |
+
Perform a comprehensive sentiment analysis of the news articles using the OpenAI API.
|
53 |
+
"""
|
54 |
+
try:
|
55 |
+
# Combine all articles into a single text
|
56 |
+
combined_text = "\n\n".join([
|
57 |
+
f"Title: {article.get('title', '')}\nContent: {article.get('snippet', '')}"
|
58 |
+
for article in articles
|
59 |
+
])
|
60 |
+
|
61 |
+
prompt = f"""Please perform an overall sentiment analysis of the following collection of news articles:
|
62 |
+
|
63 |
+
News content:
|
64 |
+
{combined_text}
|
65 |
+
|
66 |
+
Please follow this format:
|
67 |
+
1. Overall Sentiment: [Positive/Negative/Neutral]
|
68 |
+
2. Key Positive Factors:
|
69 |
+
- [Item1]
|
70 |
+
- [Item2]
|
71 |
+
3. Key Negative Factors:
|
72 |
+
- [Item1]
|
73 |
+
- [Item2]
|
74 |
+
4. Summary: [Detailed explanation]
|
75 |
+
"""
|
76 |
+
|
77 |
+
response = client.chat.completions.create(
|
78 |
+
model="CohereForAI/c4ai-command-r-plus-08-2024",
|
79 |
+
messages=[{"role": "user", "content": prompt}],
|
80 |
+
temperature=0.3,
|
81 |
+
max_tokens=1000
|
82 |
+
)
|
83 |
+
|
84 |
+
return response.choices[0].message.content
|
85 |
+
except Exception as e:
|
86 |
+
return f"Sentiment analysis failed: {str(e)}"
|
87 |
+
|
88 |
+
|
89 |
+
# Initialize the database
|
90 |
+
def init_db():
|
91 |
+
"""
|
92 |
+
Initialize the SQLite database (search_results.db) if it doesn't already exist.
|
93 |
+
"""
|
94 |
+
db_path = pathlib.Path("search_results.db")
|
95 |
+
conn = sqlite3.connect(db_path)
|
96 |
+
c = conn.cursor()
|
97 |
+
c.execute('''CREATE TABLE IF NOT EXISTS searches
|
98 |
+
(id INTEGER PRIMARY KEY AUTOINCREMENT,
|
99 |
+
keyword TEXT,
|
100 |
+
country TEXT,
|
101 |
+
results TEXT,
|
102 |
+
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP)''')
|
103 |
+
conn.commit()
|
104 |
+
conn.close()
|
105 |
+
|
106 |
+
def save_to_db(keyword, country, results):
|
107 |
+
"""
|
108 |
+
Save the search results for a specific (keyword, country) combination into the database.
|
109 |
+
"""
|
110 |
+
conn = sqlite3.connect("search_results.db")
|
111 |
+
c = conn.cursor()
|
112 |
+
seoul_tz = pytz.timezone('Asia/Seoul')
|
113 |
+
now = datetime.now(seoul_tz)
|
114 |
+
timestamp = now.strftime('%Y-%m-%d %H:%M:%S')
|
115 |
+
|
116 |
+
c.execute("""INSERT INTO searches
|
117 |
+
(keyword, country, results, timestamp)
|
118 |
+
VALUES (?, ?, ?, ?)""",
|
119 |
+
(keyword, country, json.dumps(results), timestamp))
|
120 |
+
conn.commit()
|
121 |
+
conn.close()
|
122 |
+
|
123 |
+
def load_from_db(keyword, country):
|
124 |
+
"""
|
125 |
+
Load the most recent search results for a specific (keyword, country) combination from the database.
|
126 |
+
Returns the data and the timestamp.
|
127 |
+
"""
|
128 |
+
conn = sqlite3.connect("search_results.db")
|
129 |
+
c = conn.cursor()
|
130 |
+
c.execute(
|
131 |
+
"SELECT results, timestamp FROM searches WHERE keyword=? AND country=? ORDER BY timestamp DESC LIMIT 1",
|
132 |
+
(keyword, country)
|
133 |
+
)
|
134 |
+
result = c.fetchone()
|
135 |
+
conn.close()
|
136 |
+
if result:
|
137 |
+
return json.loads(result[0]), convert_to_seoul_time(result[1])
|
138 |
+
return None, None
|
139 |
+
|
140 |
+
def display_results(articles):
|
141 |
+
"""
|
142 |
+
Convert a list of news articles into a Markdown string for display.
|
143 |
+
"""
|
144 |
+
output = ""
|
145 |
+
for idx, article in enumerate(articles, 1):
|
146 |
+
output += f"### {idx}. {article['title']}\n"
|
147 |
+
output += f"Source: {article['channel']}\n"
|
148 |
+
output += f"Time: {article['time']}\n"
|
149 |
+
output += f"Link: {article['link']}\n"
|
150 |
+
output += f"Summary: {article['snippet']}\n\n"
|
151 |
+
return output
|
152 |
+
|
153 |
+
|
154 |
+
########################################
|
155 |
+
# 1) Search => Articles + Analysis, then save to DB
|
156 |
+
########################################
|
157 |
+
def search_company(company):
|
158 |
+
"""
|
159 |
+
For a single company (or keyword), search US news.
|
160 |
+
1) Retrieve a list of articles
|
161 |
+
2) Perform sentiment analysis
|
162 |
+
3) Save results to DB
|
163 |
+
4) Return (articles + analysis) in a single output.
|
164 |
+
"""
|
165 |
+
error_message, articles = serphouse_search(company, "United States")
|
166 |
+
if not error_message and articles:
|
167 |
+
# Perform sentiment analysis
|
168 |
+
analysis = analyze_sentiment_batch(articles, client)
|
169 |
+
|
170 |
+
# Prepare data to save in DB
|
171 |
+
store_dict = {
|
172 |
+
"articles": articles,
|
173 |
+
"analysis": analysis
|
174 |
+
}
|
175 |
+
save_to_db(company, "United States", store_dict)
|
176 |
+
|
177 |
+
# Prepare output for display
|
178 |
+
output = display_results(articles)
|
179 |
+
output += f"\n\n### Analysis Report\n{analysis}\n"
|
180 |
+
return output
|
181 |
+
return f"No search results found for {company}."
|
182 |
+
|
183 |
+
########################################
|
184 |
+
# 2) Load => Return articles + analysis from DB
|
185 |
+
########################################
|
186 |
+
def load_company(company):
|
187 |
+
"""
|
188 |
+
Load the most recent US news search results for the given company (or keyword) from the database,
|
189 |
+
and return the articles + analysis in a single output.
|
190 |
+
"""
|
191 |
+
data, timestamp = load_from_db(company, "United States")
|
192 |
+
if data:
|
193 |
+
articles = data.get("articles", [])
|
194 |
+
analysis = data.get("analysis", "")
|
195 |
+
|
196 |
+
output = f"### {company} Search Results\nLast Updated: {timestamp}\n\n"
|
197 |
+
output += display_results(articles)
|
198 |
+
output += f"\n\n### Analysis Report\n{analysis}\n"
|
199 |
+
return output
|
200 |
+
return f"No saved results for {company}."
|
201 |
+
|
202 |
+
|
203 |
+
########################################
|
204 |
+
# 3) Updated show_stats() with new title
|
205 |
+
########################################
|
206 |
+
def show_stats():
|
207 |
+
"""
|
208 |
+
For each company in KOREAN_COMPANIES:
|
209 |
+
- Retrieve the most recent timestamp in DB
|
210 |
+
- Number of articles
|
211 |
+
- Sentiment analysis result
|
212 |
+
Return these in a report format.
|
213 |
+
|
214 |
+
Title changed to: "EarnBOT Analysis Report"
|
215 |
+
"""
|
216 |
+
conn = sqlite3.connect("search_results.db")
|
217 |
+
c = conn.cursor()
|
218 |
+
|
219 |
+
output = "## EarnBOT Analysis Report\n\n"
|
220 |
+
|
221 |
+
data_list = []
|
222 |
+
for company in KOREAN_COMPANIES:
|
223 |
+
c.execute("""
|
224 |
+
SELECT results, timestamp
|
225 |
+
FROM searches
|
226 |
+
WHERE keyword = ?
|
227 |
+
ORDER BY timestamp DESC
|
228 |
+
LIMIT 1
|
229 |
+
""", (company,))
|
230 |
+
|
231 |
+
row = c.fetchone()
|
232 |
+
if row:
|
233 |
+
results_json, timestamp = row
|
234 |
+
data_list.append((company, timestamp, results_json))
|
235 |
+
|
236 |
+
conn.close()
|
237 |
+
|
238 |
+
def analyze_data(item):
|
239 |
+
comp, tstamp, results_json = item
|
240 |
+
data = json.loads(results_json)
|
241 |
+
articles = data.get("articles", [])
|
242 |
+
analysis = data.get("analysis", "")
|
243 |
+
|
244 |
+
count_articles = len(articles)
|
245 |
+
return (comp, tstamp, count_articles, analysis)
|
246 |
+
|
247 |
+
results_list = []
|
248 |
+
with ThreadPoolExecutor(max_workers=5) as executor:
|
249 |
+
futures = [executor.submit(analyze_data, dl) for dl in data_list]
|
250 |
+
for future in as_completed(futures):
|
251 |
+
results_list.append(future.result())
|
252 |
+
|
253 |
+
for comp, tstamp, count, analysis in results_list:
|
254 |
+
seoul_time = convert_to_seoul_time(tstamp)
|
255 |
+
output += f"### {comp}\n"
|
256 |
+
output += f"- Last updated: {seoul_time}\n"
|
257 |
+
output += f"- Number of articles stored: {count}\n\n"
|
258 |
+
if analysis:
|
259 |
+
output += "#### News Sentiment Analysis\n"
|
260 |
+
output += f"{analysis}\n\n"
|
261 |
+
output += "---\n\n"
|
262 |
+
|
263 |
+
return output
|
264 |
+
|
265 |
+
|
266 |
+
def search_all_companies():
|
267 |
+
"""
|
268 |
+
Search all companies in KOREAN_COMPANIES (in parallel),
|
269 |
+
perform sentiment analysis + save to DB => return Markdown of all results.
|
270 |
+
"""
|
271 |
+
overall_result = "# [Search Results for All Companies]\n\n"
|
272 |
+
|
273 |
+
def do_search(comp):
|
274 |
+
return comp, search_company(comp)
|
275 |
+
|
276 |
+
with ThreadPoolExecutor(max_workers=5) as executor:
|
277 |
+
futures = [executor.submit(do_search, c) for c in KOREAN_COMPANIES]
|
278 |
+
for future in as_completed(futures):
|
279 |
+
comp, res_text = future.result()
|
280 |
+
overall_result += f"## {comp}\n"
|
281 |
+
overall_result += res_text + "\n\n"
|
282 |
+
|
283 |
+
return overall_result
|
284 |
+
|
285 |
+
def load_all_companies():
|
286 |
+
"""
|
287 |
+
Load articles + analysis for all companies in KOREAN_COMPANIES from the DB => return Markdown.
|
288 |
+
"""
|
289 |
+
overall_result = "# [All Companies Data Output]\n\n"
|
290 |
+
|
291 |
+
for comp in KOREAN_COMPANIES:
|
292 |
+
overall_result += f"## {comp}\n"
|
293 |
+
overall_result += load_company(comp)
|
294 |
+
overall_result += "\n"
|
295 |
+
return overall_result
|
296 |
+
|
297 |
+
def full_summary_report():
|
298 |
+
"""
|
299 |
+
1) Search all companies (in parallel) -> 2) Load results -> 3) Show sentiment analysis stats
|
300 |
+
Return a combined report with all three steps.
|
301 |
+
"""
|
302 |
+
# 1) Search all companies => store to DB
|
303 |
+
search_result_text = search_all_companies()
|
304 |
+
|
305 |
+
# 2) Load all results => from DB
|
306 |
+
load_result_text = load_all_companies()
|
307 |
+
|
308 |
+
# 3) Show stats => EarnBOT Analysis Report
|
309 |
+
stats_text = show_stats()
|
310 |
+
|
311 |
+
combined_report = (
|
312 |
+
"# Full Analysis Summary Report\n\n"
|
313 |
+
"Executed in the following order:\n"
|
314 |
+
"1. Search all companies (parallel) + sentiment analysis => 2. Load results from DB => 3. Show overall sentiment analysis stats\n\n"
|
315 |
+
f"{search_result_text}\n\n"
|
316 |
+
f"{load_result_text}\n\n"
|
317 |
+
"## [Overall Sentiment Analysis Stats]\n\n"
|
318 |
+
f"{stats_text}"
|
319 |
+
)
|
320 |
+
return combined_report
|
321 |
+
|
322 |
+
|
323 |
+
########################################
|
324 |
+
# Additional feature: User custom search
|
325 |
+
########################################
|
326 |
+
def search_custom(query, country):
|
327 |
+
"""
|
328 |
+
For a user-provided (query, country):
|
329 |
+
1) Search + sentiment analysis => save to DB
|
330 |
+
2) Load from DB => display articles + analysis
|
331 |
+
"""
|
332 |
+
error_message, articles = serphouse_search(query, country)
|
333 |
+
if error_message:
|
334 |
+
return f"An error occurred: {error_message}"
|
335 |
+
if not articles:
|
336 |
+
return "No results were found for your query."
|
337 |
+
|
338 |
+
# 1) Perform analysis
|
339 |
+
analysis = analyze_sentiment_batch(articles, client)
|
340 |
+
|
341 |
+
# 2) Save to DB
|
342 |
+
save_data = {
|
343 |
+
"articles": articles,
|
344 |
+
"analysis": analysis
|
345 |
+
}
|
346 |
+
save_to_db(query, country, save_data)
|
347 |
+
|
348 |
+
# 3) Reload from DB
|
349 |
+
loaded_data, timestamp = load_from_db(query, country)
|
350 |
+
if not loaded_data:
|
351 |
+
return "Failed to load data from DB."
|
352 |
+
|
353 |
+
# 4) Prepare final output
|
354 |
+
out = f"## [Custom Search Results]\n\n"
|
355 |
+
out += f"**Keyword**: {query}\n\n"
|
356 |
+
out += f"**Country**: {country}\n\n"
|
357 |
+
out += f"**Timestamp**: {timestamp}\n\n"
|
358 |
+
|
359 |
+
arts = loaded_data.get("articles", [])
|
360 |
+
analy = loaded_data.get("analysis", "")
|
361 |
+
|
362 |
+
out += display_results(arts)
|
363 |
+
out += f"### News Sentiment Analysis\n{analy}\n"
|
364 |
+
|
365 |
+
return out
|
366 |
+
|
367 |
+
|
368 |
+
########################################
|
369 |
+
# API Authentication
|
370 |
+
########################################
|
371 |
+
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
372 |
+
if not ACCESS_TOKEN:
|
373 |
+
raise ValueError("HF_TOKEN environment variable is not set")
|
374 |
+
|
375 |
+
client = OpenAI(
|
376 |
+
base_url="https://api-inference.huggingface.co/v1/",
|
377 |
+
api_key=ACCESS_TOKEN,
|
378 |
+
)
|
379 |
+
|
380 |
+
API_KEY = os.getenv("SERPHOUSE_API_KEY")
|
381 |
+
|
382 |
+
|
383 |
+
########################################
|
384 |
+
# Country-specific settings
|
385 |
+
########################################
|
386 |
+
COUNTRY_LANGUAGES = {
|
387 |
+
"United States": "en",
|
388 |
+
"KOREA": "ko",
|
389 |
+
"United Kingdom": "en",
|
390 |
+
"Taiwan": "zh-TW",
|
391 |
+
"Canada": "en",
|
392 |
+
"Australia": "en",
|
393 |
+
"Germany": "de",
|
394 |
+
"France": "fr",
|
395 |
+
"Japan": "ja",
|
396 |
+
"China": "zh",
|
397 |
+
"India": "hi",
|
398 |
+
"Brazil": "pt",
|
399 |
+
"Mexico": "es",
|
400 |
+
"Russia": "ru",
|
401 |
+
"Italy": "it",
|
402 |
+
"Spain": "es",
|
403 |
+
"Netherlands": "nl",
|
404 |
+
"Singapore": "en",
|
405 |
+
"Hong Kong": "zh-HK",
|
406 |
+
"Indonesia": "id",
|
407 |
+
"Malaysia": "ms",
|
408 |
+
"Philippines": "tl",
|
409 |
+
"Thailand": "th",
|
410 |
+
"Vietnam": "vi",
|
411 |
+
"Belgium": "nl",
|
412 |
+
"Denmark": "da",
|
413 |
+
"Finland": "fi",
|
414 |
+
"Ireland": "en",
|
415 |
+
"Norway": "no",
|
416 |
+
"Poland": "pl",
|
417 |
+
"Sweden": "sv",
|
418 |
+
"Switzerland": "de",
|
419 |
+
"Austria": "de",
|
420 |
+
"Czech Republic": "cs",
|
421 |
+
"Greece": "el",
|
422 |
+
"Hungary": "hu",
|
423 |
+
"Portugal": "pt",
|
424 |
+
"Romania": "ro",
|
425 |
+
"Turkey": "tr",
|
426 |
+
"Israel": "he",
|
427 |
+
"Saudi Arabia": "ar",
|
428 |
+
"United Arab Emirates": "ar",
|
429 |
+
"South Africa": "en",
|
430 |
+
"Argentina": "es",
|
431 |
+
"Chile": "es",
|
432 |
+
"Colombia": "es",
|
433 |
+
"Peru": "es",
|
434 |
+
"Venezuela": "es",
|
435 |
+
"New Zealand": "en",
|
436 |
+
"Bangladesh": "bn",
|
437 |
+
"Pakistan": "ur",
|
438 |
+
"Egypt": "ar",
|
439 |
+
"Morocco": "ar",
|
440 |
+
"Nigeria": "en",
|
441 |
+
"Kenya": "sw",
|
442 |
+
"Ukraine": "uk",
|
443 |
+
"Croatia": "hr",
|
444 |
+
"Slovakia": "sk",
|
445 |
+
"Bulgaria": "bg",
|
446 |
+
"Serbia": "sr",
|
447 |
+
"Estonia": "et",
|
448 |
+
"Latvia": "lv",
|
449 |
+
"Lithuania": "lt",
|
450 |
+
"Slovenia": "sl",
|
451 |
+
"Luxembourg": "Luxembourg",
|
452 |
+
"Malta": "Malta",
|
453 |
+
"Cyprus": "Cyprus",
|
454 |
+
"Iceland": "Iceland"
|
455 |
+
}
|
456 |
+
|
457 |
+
COUNTRY_LOCATIONS = {
|
458 |
+
"United States": "United States",
|
459 |
+
"KOREA": "kr",
|
460 |
+
"United Kingdom": "United Kingdom",
|
461 |
+
"Taiwan": "Taiwan",
|
462 |
+
"Canada": "Canada",
|
463 |
+
"Australia": "Australia",
|
464 |
+
"Germany": "Germany",
|
465 |
+
"France": "France",
|
466 |
+
"Japan": "Japan",
|
467 |
+
"China": "China",
|
468 |
+
"India": "India",
|
469 |
+
"Brazil": "Brazil",
|
470 |
+
"Mexico": "Mexico",
|
471 |
+
"Russia": "Russia",
|
472 |
+
"Italy": "Italy",
|
473 |
+
"Spain": "Spain",
|
474 |
+
"Netherlands": "Netherlands",
|
475 |
+
"Singapore": "Singapore",
|
476 |
+
"Hong Kong": "Hong Kong",
|
477 |
+
"Indonesia": "Indonesia",
|
478 |
+
"Malaysia": "Malaysia",
|
479 |
+
"Philippines": "Philippines",
|
480 |
+
"Thailand": "Thailand",
|
481 |
+
"Vietnam": "Vietnam",
|
482 |
+
"Belgium": "Belgium",
|
483 |
+
"Denmark": "Denmark",
|
484 |
+
"Finland": "Finland",
|
485 |
+
"Ireland": "Ireland",
|
486 |
+
"Norway": "Norway",
|
487 |
+
"Poland": "Poland",
|
488 |
+
"Sweden": "Sweden",
|
489 |
+
"Switzerland": "Switzerland",
|
490 |
+
"Austria": "Austria",
|
491 |
+
"Czech Republic": "Czech Republic",
|
492 |
+
"Greece": "Greece",
|
493 |
+
"Hungary": "Hungary",
|
494 |
+
"Portugal": "Portugal",
|
495 |
+
"Romania": "Romania",
|
496 |
+
"Turkey": "Turkey",
|
497 |
+
"Israel": "Israel",
|
498 |
+
"Saudi Arabia": "Saudi Arabia",
|
499 |
+
"United Arab Emirates": "United Arab Emirates",
|
500 |
+
"South Africa": "South Africa",
|
501 |
+
"Argentina": "Argentina",
|
502 |
+
"Chile": "Chile",
|
503 |
+
"Colombia": "Colombia",
|
504 |
+
"Peru": "Peru",
|
505 |
+
"Venezuela": "Venezuela",
|
506 |
+
"New Zealand": "New Zealand",
|
507 |
+
"Bangladesh": "Bangladesh",
|
508 |
+
"Pakistan": "Pakistan",
|
509 |
+
"Egypt": "Egypt",
|
510 |
+
"Morocco": "Morocco",
|
511 |
+
"Nigeria": "Nigeria",
|
512 |
+
"Kenya": "Kenya",
|
513 |
+
"Ukraine": "Ukraine",
|
514 |
+
"Croatia": "Croatia",
|
515 |
+
"Slovakia": "Slovakia",
|
516 |
+
"Bulgaria": "Bulgaria",
|
517 |
+
"Serbia": "Serbia",
|
518 |
+
"Estonia": "et",
|
519 |
+
"Latvia": "lv",
|
520 |
+
"Lithuania": "lt",
|
521 |
+
"Slovenia": "sl",
|
522 |
+
"Luxembourg": "Luxembourg",
|
523 |
+
"Malta": "Malta",
|
524 |
+
"Cyprus": "Cyprus",
|
525 |
+
"Iceland": "Iceland"
|
526 |
+
}
|
527 |
+
|
528 |
+
|
529 |
+
@lru_cache(maxsize=100)
|
530 |
+
def translate_query(query, country):
|
531 |
+
"""
|
532 |
+
Use the unofficial Google Translation API to translate the query into the target country's language.
|
533 |
+
If the query is already in English, or if translation fails, return the original query.
|
534 |
+
"""
|
535 |
+
try:
|
536 |
+
if is_english(query):
|
537 |
+
return query
|
538 |
+
|
539 |
+
if country in COUNTRY_LANGUAGES:
|
540 |
+
if country == "South Korea":
|
541 |
+
return query
|
542 |
+
target_lang = COUNTRY_LANGUAGES[country]
|
543 |
+
|
544 |
+
url = "https://translate.googleapis.com/translate_a/single"
|
545 |
+
params = {
|
546 |
+
"client": "gtx",
|
547 |
+
"sl": "auto",
|
548 |
+
"tl": target_lang,
|
549 |
+
"dt": "t",
|
550 |
+
"q": query
|
551 |
+
}
|
552 |
+
|
553 |
+
session = requests.Session()
|
554 |
+
retries = Retry(total=3, backoff_factor=0.5)
|
555 |
+
session.mount('https://', HTTPAdapter(max_retries=retries))
|
556 |
+
|
557 |
+
response = session.get(url, params=params, timeout=(5, 10))
|
558 |
+
translated_text = response.json()[0][0][0]
|
559 |
+
return translated_text
|
560 |
+
return query
|
561 |
+
|
562 |
+
except Exception as e:
|
563 |
+
print(f"Translation error: {str(e)}")
|
564 |
+
return query
|
565 |
+
|
566 |
+
def is_english(text):
|
567 |
+
"""
|
568 |
+
Check if a string is (mostly) English by verifying character code ranges.
|
569 |
+
"""
|
570 |
+
return all(ord(char) < 128 for char in text.replace(' ', '').replace('-', '').replace('_', ''))
|
571 |
+
|
572 |
+
def search_serphouse(query, country, page=1, num_result=10):
|
573 |
+
"""
|
574 |
+
Send a real-time search request to the SerpHouse API,
|
575 |
+
specifying the 'news' tab (sort_by=date) for the given query.
|
576 |
+
Returns a dict with 'results' or 'error'.
|
577 |
+
"""
|
578 |
+
url = "https://api.serphouse.com/serp/live"
|
579 |
+
|
580 |
+
now = datetime.utcnow()
|
581 |
+
yesterday = now - timedelta(days=1)
|
582 |
+
date_range = f"{yesterday.strftime('%Y-%m-%d')},{now.strftime('%Y-%m-%d')}"
|
583 |
+
|
584 |
+
translated_query = translate_query(query, country)
|
585 |
+
|
586 |
+
payload = {
|
587 |
+
"data": {
|
588 |
+
"q": translated_query,
|
589 |
+
"domain": "google.com",
|
590 |
+
"loc": COUNTRY_LOCATIONS.get(country, "United States"),
|
591 |
+
"lang": COUNTRY_LANGUAGES.get(country, "en"),
|
592 |
+
"device": "desktop",
|
593 |
+
"serp_type": "news",
|
594 |
+
"page": str(page),
|
595 |
+
"num": "100",
|
596 |
+
"date_range": date_range,
|
597 |
+
"sort_by": "date"
|
598 |
+
}
|
599 |
+
}
|
600 |
+
|
601 |
+
headers = {
|
602 |
+
"accept": "application/json",
|
603 |
+
"content-type": "application/json",
|
604 |
+
"authorization": f"Bearer {API_KEY}"
|
605 |
+
}
|
606 |
+
|
607 |
+
try:
|
608 |
+
session = requests.Session()
|
609 |
+
|
610 |
+
retries = Retry(
|
611 |
+
total=5,
|
612 |
+
backoff_factor=1,
|
613 |
+
status_forcelist=[500, 502, 503, 504, 429],
|
614 |
+
allowed_methods=["POST"]
|
615 |
+
)
|
616 |
+
|
617 |
+
adapter = HTTPAdapter(max_retries=retries)
|
618 |
+
session.mount('http://', adapter)
|
619 |
+
session.mount('https://', adapter)
|
620 |
+
|
621 |
+
response = session.post(
|
622 |
+
url,
|
623 |
+
json=payload,
|
624 |
+
headers=headers,
|
625 |
+
timeout=(30, 30)
|
626 |
+
)
|
627 |
+
|
628 |
+
response.raise_for_status()
|
629 |
+
return {"results": response.json(), "translated_query": translated_query}
|
630 |
+
|
631 |
+
except requests.exceptions.Timeout:
|
632 |
+
return {
|
633 |
+
"error": "Search timed out. Please try again later.",
|
634 |
+
"translated_query": query
|
635 |
+
}
|
636 |
+
except requests.exceptions.RequestException as e:
|
637 |
+
return {
|
638 |
+
"error": f"Error during search: {str(e)}",
|
639 |
+
"translated_query": query
|
640 |
+
}
|
641 |
+
except Exception as e:
|
642 |
+
return {
|
643 |
+
"error": f"Unexpected error occurred: {str(e)}",
|
644 |
+
"translated_query": query
|
645 |
+
}
|
646 |
+
|
647 |
+
def format_results_from_raw(response_data):
|
648 |
+
"""
|
649 |
+
Process the SerpHouse API response data and return (error_message, article_list).
|
650 |
+
"""
|
651 |
+
if "error" in response_data:
|
652 |
+
return "Error: " + response_data["error"], []
|
653 |
+
|
654 |
+
try:
|
655 |
+
results = response_data["results"]
|
656 |
+
translated_query = response_data["translated_query"]
|
657 |
+
|
658 |
+
news_results = results.get('results', {}).get('results', {}).get('news', [])
|
659 |
+
if not news_results:
|
660 |
+
return "No search results found.", []
|
661 |
+
|
662 |
+
# Filter out Korean domains and Korean keywords (example filtering)
|
663 |
+
korean_domains = [
|
664 |
+
'.kr', 'korea', 'korean', 'yonhap', 'hankyung', 'chosun',
|
665 |
+
'donga', 'joins', 'hani', 'koreatimes', 'koreaherald'
|
666 |
+
]
|
667 |
+
korean_keywords = [
|
668 |
+
'korea', 'korean', 'seoul', 'busan', 'incheon', 'daegu',
|
669 |
+
'gwangju', 'daejeon', 'ulsan', 'sejong'
|
670 |
+
]
|
671 |
+
|
672 |
+
filtered_articles = []
|
673 |
+
for idx, result in enumerate(news_results, 1):
|
674 |
+
url = result.get("url", result.get("link", "")).lower()
|
675 |
+
title = result.get("title", "").lower()
|
676 |
+
channel = result.get("channel", result.get("source", "")).lower()
|
677 |
+
|
678 |
+
is_korean_content = (
|
679 |
+
any(domain in url or domain in channel for domain in korean_domains) or
|
680 |
+
any(keyword in title for keyword in korean_keywords)
|
681 |
+
)
|
682 |
+
|
683 |
+
# Exclude Korean content
|
684 |
+
if not is_korean_content:
|
685 |
+
filtered_articles.append({
|
686 |
+
"index": idx,
|
687 |
+
"title": result.get("title", "No Title"),
|
688 |
+
"link": url,
|
689 |
+
"snippet": result.get("snippet", "No Content"),
|
690 |
+
"channel": result.get("channel", result.get("source", "Unknown")),
|
691 |
+
"time": result.get("time", result.get("date", "Unknown Time")),
|
692 |
+
"image_url": result.get("img", result.get("thumbnail", "")),
|
693 |
+
"translated_query": translated_query
|
694 |
+
})
|
695 |
+
|
696 |
+
return "", filtered_articles
|
697 |
+
except Exception as e:
|
698 |
+
return f"Error processing results: {str(e)}", []
|
699 |
+
|
700 |
+
def serphouse_search(query, country):
|
701 |
+
"""
|
702 |
+
Helper function to search and then format results.
|
703 |
+
Returns (error_message, article_list).
|
704 |
+
"""
|
705 |
+
response_data = search_serphouse(query, country)
|
706 |
+
return format_results_from_raw(response_data)
|
707 |
+
|
708 |
+
|
709 |
+
# Refined, modern, and sleek custom CSS
|
710 |
+
css = """
|
711 |
+
body {
|
712 |
+
background: linear-gradient(to bottom right, #f9fafb, #ffffff);
|
713 |
+
font-family: 'Arial', sans-serif;
|
714 |
+
}
|
715 |
+
|
716 |
+
/* Hide default Gradio footer */
|
717 |
+
footer {
|
718 |
+
visibility: hidden;
|
719 |
+
}
|
720 |
+
|
721 |
+
/* Header/Status area */
|
722 |
+
#status_area {
|
723 |
+
background: rgba(255, 255, 255, 0.9);
|
724 |
+
padding: 15px;
|
725 |
+
border-bottom: 1px solid #ddd;
|
726 |
+
margin-bottom: 20px;
|
727 |
+
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
|
728 |
+
}
|
729 |
+
|
730 |
+
/* Results area */
|
731 |
+
#results_area {
|
732 |
+
padding: 10px;
|
733 |
+
margin-top: 10px;
|
734 |
+
}
|
735 |
+
|
736 |
+
/* Tabs style */
|
737 |
+
.tabs {
|
738 |
+
border-bottom: 2px solid #ddd !important;
|
739 |
+
margin-bottom: 20px !important;
|
740 |
+
}
|
741 |
+
|
742 |
+
.tab-nav {
|
743 |
+
border-bottom: none !important;
|
744 |
+
margin-bottom: 0 !important;
|
745 |
+
}
|
746 |
+
|
747 |
+
.tab-nav button {
|
748 |
+
font-weight: bold !important;
|
749 |
+
padding: 10px 20px !important;
|
750 |
+
background-color: #f0f0f0 !important;
|
751 |
+
border: 1px solid #ccc !important;
|
752 |
+
border-radius: 5px !important;
|
753 |
+
margin-right: 5px !important;
|
754 |
+
}
|
755 |
+
|
756 |
+
.tab-nav button.selected {
|
757 |
+
border-bottom: 2px solid #1f77b4 !important;
|
758 |
+
background-color: #e6f2fa !important;
|
759 |
+
color: #1f77b4 !important;
|
760 |
+
}
|
761 |
+
|
762 |
+
/* Status message styling */
|
763 |
+
#status_area .markdown-text {
|
764 |
+
font-size: 1.1em;
|
765 |
+
color: #2c3e50;
|
766 |
+
padding: 10px 0;
|
767 |
+
}
|
768 |
+
|
769 |
+
/* Main container grouping */
|
770 |
+
.group {
|
771 |
+
border: 1px solid #eee;
|
772 |
+
padding: 15px;
|
773 |
+
margin-bottom: 15px;
|
774 |
+
border-radius: 5px;
|
775 |
+
background: white;
|
776 |
+
transition: all 0.3s ease;
|
777 |
+
opacity: 0;
|
778 |
+
transform: translateY(20px);
|
779 |
+
}
|
780 |
+
.group.visible {
|
781 |
+
opacity: 1;
|
782 |
+
transform: translateY(0);
|
783 |
+
}
|
784 |
+
|
785 |
+
/* Buttons */
|
786 |
+
.primary-btn {
|
787 |
+
background: #1f77b4 !important;
|
788 |
+
border: none !important;
|
789 |
+
color: #fff !important;
|
790 |
+
border-radius: 5px !important;
|
791 |
+
padding: 10px 20px !important;
|
792 |
+
cursor: pointer !important;
|
793 |
+
}
|
794 |
+
.primary-btn:hover {
|
795 |
+
background: #155a8c !important;
|
796 |
+
}
|
797 |
+
|
798 |
+
.secondary-btn {
|
799 |
+
background: #f0f0f0 !important;
|
800 |
+
border: 1px solid #ccc !important;
|
801 |
+
color: #333 !important;
|
802 |
+
border-radius: 5px !important;
|
803 |
+
padding: 10px 20px !important;
|
804 |
+
cursor: pointer !important;
|
805 |
+
}
|
806 |
+
.secondary-btn:hover {
|
807 |
+
background: #e0e0e0 !important;
|
808 |
+
}
|
809 |
+
|
810 |
+
/* Input fields */
|
811 |
+
.textbox {
|
812 |
+
border: 1px solid #ddd !important;
|
813 |
+
border-radius: 4px !important;
|
814 |
+
}
|
815 |
+
|
816 |
+
/* Progress bar container */
|
817 |
+
.progress-container {
|
818 |
+
position: fixed;
|
819 |
+
top: 0;
|
820 |
+
left: 0;
|
821 |
+
width: 100%;
|
822 |
+
height: 6px;
|
823 |
+
background: #e0e0e0;
|
824 |
+
z-index: 1000;
|
825 |
+
}
|
826 |
+
|
827 |
+
/* Progress bar */
|
828 |
+
.progress-bar {
|
829 |
+
height: 100%;
|
830 |
+
background: linear-gradient(90deg, #2196F3, #00BCD4);
|
831 |
+
box-shadow: 0 0 10px rgba(33, 150, 243, 0.5);
|
832 |
+
transition: width 0.3s ease;
|
833 |
+
animation: progress-glow 1.5s ease-in-out infinite;
|
834 |
+
}
|
835 |
+
|
836 |
+
/* Progress text */
|
837 |
+
.progress-text {
|
838 |
+
position: fixed;
|
839 |
+
top: 8px;
|
840 |
+
left: 50%;
|
841 |
+
transform: translateX(-50%);
|
842 |
+
background: #333;
|
843 |
+
color: white;
|
844 |
+
padding: 4px 12px;
|
845 |
+
border-radius: 15px;
|
846 |
+
font-size: 14px;
|
847 |
+
z-index: 1001;
|
848 |
+
box-shadow: 0 2px 5px rgba(0,0,0,0.2);
|
849 |
+
}
|
850 |
+
|
851 |
+
/* Progress bar animation */
|
852 |
+
@keyframes progress-glow {
|
853 |
+
0% {
|
854 |
+
box-shadow: 0 0 5px rgba(33, 150, 243, 0.5);
|
855 |
+
}
|
856 |
+
50% {
|
857 |
+
box-shadow: 0 0 20px rgba(33, 150, 243, 0.8);
|
858 |
+
}
|
859 |
+
100% {
|
860 |
+
box-shadow: 0 0 5px rgba(33, 150, 243, 0.5);
|
861 |
+
}
|
862 |
+
}
|
863 |
+
|
864 |
+
/* Loading state */
|
865 |
+
.loading {
|
866 |
+
opacity: 0.7;
|
867 |
+
pointer-events: none;
|
868 |
+
transition: opacity 0.3s ease;
|
869 |
+
}
|
870 |
+
|
871 |
+
/* Responsive design for smaller screens */
|
872 |
+
@media (max-width: 768px) {
|
873 |
+
.group {
|
874 |
+
padding: 10px;
|
875 |
+
margin-bottom: 15px;
|
876 |
+
}
|
877 |
+
|
878 |
+
.progress-text {
|
879 |
+
font-size: 12px;
|
880 |
+
padding: 3px 10px;
|
881 |
+
}
|
882 |
+
}
|
883 |
+
|
884 |
+
/* Example section styling */
|
885 |
+
.examples-table {
|
886 |
+
margin-top: 10px !important;
|
887 |
+
margin-bottom: 20px !important;
|
888 |
+
}
|
889 |
+
|
890 |
+
.examples-table button {
|
891 |
+
background-color: #f0f0f0 !important;
|
892 |
+
border: 1px solid #ddd !important;
|
893 |
+
border-radius: 4px !important;
|
894 |
+
padding: 5px 10px !important;
|
895 |
+
margin: 2px !important;
|
896 |
+
transition: all 0.3s ease !important;
|
897 |
+
}
|
898 |
+
|
899 |
+
.examples-table button:hover {
|
900 |
+
background-color: #e0e0e0 !important;
|
901 |
+
transform: translateY(-1px) !important;
|
902 |
+
box-shadow: 0 2px 5px rgba(0,0,0,0.1) !important;
|
903 |
+
}
|
904 |
+
|
905 |
+
.examples-table .label {
|
906 |
+
font-weight: bold !important;
|
907 |
+
color: #444 !important;
|
908 |
+
margin-bottom: 5px !important;
|
909 |
+
}
|
910 |
+
"""
|
911 |
+
|
912 |
+
# --- Gradio Interface ---
|
913 |
+
with gr.Blocks(css=css, title="NewsAI Service") as iface:
|
914 |
+
init_db()
|
915 |
+
|
916 |
+
with gr.Tabs():
|
917 |
+
with gr.Tab("EarnBot"):
|
918 |
+
gr.Markdown("## EarnBot: AI-powered Analysis of Global Big Tech Companies and Investment Outlook")
|
919 |
+
gr.Markdown(
|
920 |
+
" * Click on 'Generate Full Analysis Summary Report' to create a comprehensive automated report.\n"
|
921 |
+
" * You can also 'Search (automatically save to DB)' and 'Load from DB (automatically retrieve)' for each listed company.\n"
|
922 |
+
" * Additionally, feel free to search/analyze any custom keyword in your chosen country."
|
923 |
+
)
|
924 |
+
|
925 |
+
# User custom search section
|
926 |
+
with gr.Group():
|
927 |
+
gr.Markdown("### Custom Search")
|
928 |
+
with gr.Row():
|
929 |
+
with gr.Column():
|
930 |
+
user_input = gr.Textbox(
|
931 |
+
label="Enter your keyword",
|
932 |
+
placeholder="e.g., Apple, Samsung, etc.",
|
933 |
+
elem_classes="textbox"
|
934 |
+
)
|
935 |
+
with gr.Column():
|
936 |
+
country_selection = gr.Dropdown(
|
937 |
+
choices=list(COUNTRY_LOCATIONS.keys()),
|
938 |
+
value="United States",
|
939 |
+
label="Select Country"
|
940 |
+
)
|
941 |
+
with gr.Column():
|
942 |
+
custom_search_btn = gr.Button("Search", variant="primary", elem_classes="primary-btn")
|
943 |
+
|
944 |
+
custom_search_output = gr.Markdown()
|
945 |
+
|
946 |
+
custom_search_btn.click(
|
947 |
+
fn=search_custom,
|
948 |
+
inputs=[user_input, country_selection],
|
949 |
+
outputs=custom_search_output
|
950 |
+
)
|
951 |
+
|
952 |
+
# Button to generate a full report
|
953 |
+
with gr.Row():
|
954 |
+
full_report_btn = gr.Button("Generate Full Analysis Summary Report", variant="primary", elem_classes="primary-btn")
|
955 |
+
full_report_display = gr.Markdown()
|
956 |
+
|
957 |
+
full_report_btn.click(
|
958 |
+
fn=full_summary_report,
|
959 |
+
outputs=full_report_display
|
960 |
+
)
|
961 |
+
|
962 |
+
# Individual search/load for companies in KOREAN_COMPANIES
|
963 |
+
with gr.Column():
|
964 |
+
for i in range(0, len(KOREAN_COMPANIES), 2):
|
965 |
+
with gr.Row():
|
966 |
+
# Left column
|
967 |
+
with gr.Column():
|
968 |
+
company = KOREAN_COMPANIES[i]
|
969 |
+
with gr.Group():
|
970 |
+
gr.Markdown(f"### {company}")
|
971 |
+
with gr.Row():
|
972 |
+
search_btn = gr.Button("Search", variant="primary", elem_classes="primary-btn")
|
973 |
+
load_btn = gr.Button("Load from DB", variant="secondary", elem_classes="secondary-btn")
|
974 |
+
result_display = gr.Markdown()
|
975 |
+
|
976 |
+
search_btn.click(
|
977 |
+
fn=lambda c=company: search_company(c),
|
978 |
+
outputs=result_display
|
979 |
+
)
|
980 |
+
load_btn.click(
|
981 |
+
fn=lambda c=company: load_company(c),
|
982 |
+
outputs=result_display
|
983 |
+
)
|
984 |
+
|
985 |
+
# Right column (if exists)
|
986 |
+
if i + 1 < len(KOREAN_COMPANIES):
|
987 |
+
with gr.Column():
|
988 |
+
company = KOREAN_COMPANIES[i + 1]
|
989 |
+
with gr.Group():
|
990 |
+
gr.Markdown(f"### {company}")
|
991 |
+
with gr.Row():
|
992 |
+
search_btn = gr.Button("Search", variant="primary", elem_classes="primary-btn")
|
993 |
+
load_btn = gr.Button("Load from DB", variant="secondary", elem_classes="secondary-btn")
|
994 |
+
result_display = gr.Markdown()
|
995 |
+
|
996 |
+
search_btn.click(
|
997 |
+
fn=lambda c=company: search_company(c),
|
998 |
+
outputs=result_display
|
999 |
+
)
|
1000 |
+
load_btn.click(
|
1001 |
+
fn=lambda c=company: load_company(c),
|
1002 |
+
outputs=result_display
|
1003 |
+
)
|
1004 |
+
|
1005 |
+
iface.launch(
|
1006 |
+
server_name="0.0.0.0",
|
1007 |
+
server_port=7860,
|
1008 |
+
share=True,
|
1009 |
+
ssl_verify=False,
|
1010 |
+
show_error=True
|
1011 |
+
)
|