File size: 8,500 Bytes
045e583
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import os
import yaml
import torch
import sys
sys.path.append(os.path.abspath('./'))
from inference.utils import *
from train import WurstCoreB
from gdf import DDPMSampler
from train import WurstCore_t2i as WurstCoreC
import numpy as np
import random
import argparse
import gradio as gr


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument( '--height', type=int, default=2560, help='image height')
    parser.add_argument('--width', type=int, default=5120, help='image width')
    parser.add_argument('--seed', type=int, default=123, help='random seed')
    parser.add_argument('--dtype', type=str, default='bf16', help=' if bf16 does not work, change it to float32 ')
    parser.add_argument('--config_c', type=str, 
    default='configs/training/t2i.yaml' ,help='config file for stage c, latent generation')
    parser.add_argument('--config_b', type=str, 
    default='configs/inference/stage_b_1b.yaml' ,help='config file for stage b, latent decoding')
    parser.add_argument( '--prompt', type=str,
     default='A photo-realistic image of a west highland white terrier in the garden, high quality, detail rich, 8K', help='text prompt')
    parser.add_argument( '--num_image', type=int, default=1, help='how many images generated')
    parser.add_argument( '--output_dir', type=str, default='figures/output_results/', help='output directory for generated image')
    parser.add_argument( '--stage_a_tiled', action='store_true', help='whther or nor to use tiled decoding for stage a to save memory')
    parser.add_argument( '--pretrained_path', type=str, default='models/ultrapixel_t2i.safetensors', help='pretrained path of newly added paramter of UltraPixel')
    args = parser.parse_args()
    return args

def clear_image():
    return None
def load_message(height, width, seed, prompt, args, stage_a_tiled):
    args.height = height
    args.width = width
    args.seed  = seed
    args.prompt = prompt + ' rich detail, 4k, high quality'
    args.stage_a_tiled = stage_a_tiled
    return args
@spaces.GPU(duration=120)
def get_image(height, width, seed, prompt, cfg, timesteps, stage_a_tiled):
    global args
    args = load_message(height, width, seed, prompt,  args, stage_a_tiled)
    torch.manual_seed(args.seed)
    random.seed(args.seed) 
    np.random.seed(args.seed)
    dtype = torch.bfloat16 if args.dtype == 'bf16' else torch.float

    captions = [args.prompt] * args.num_image
    height, width = args.height, args.width
    batch_size=1 
    height_lr, width_lr = get_target_lr_size(height / width, std_size=32)
    stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
    stage_c_latent_shape_lr, stage_b_latent_shape_lr = calculate_latent_sizes(height_lr, width_lr, batch_size=batch_size)
   
    # Stage C Parameters
    extras.sampling_configs['cfg'] = 4
    extras.sampling_configs['shift'] = 1
    extras.sampling_configs['timesteps'] = 20
    extras.sampling_configs['t_start'] = 1.0
    extras.sampling_configs['sampler'] = DDPMSampler(extras.gdf)
    
    
    
    # Stage B Parameters
    extras_b.sampling_configs['cfg'] = 1.1
    extras_b.sampling_configs['shift'] = 1
    extras_b.sampling_configs['timesteps'] = 10
    extras_b.sampling_configs['t_start'] = 1.0

    for _, caption in enumerate(captions):

        
            batch = {'captions': [caption] * batch_size}
            #conditions = core.get_conditions(batch, models, extras, is_eval=True, is_unconditional=False, eval_image_embeds=False)
            #unconditions = core.get_conditions(batch, models, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False)    
            
            conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
            unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
            
            
            with torch.no_grad():
        
            
                models.generator.cuda()
                print('STAGE C GENERATION***************************')
                with torch.cuda.amp.autocast(dtype=dtype):
                    sampled_c = generation_c(batch, models, extras, core, stage_c_latent_shape, stage_c_latent_shape_lr, device)
                
                    
                    
                models.generator.cpu()
                torch.cuda.empty_cache()
                
                conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
                unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
                conditions_b['effnet'] = sampled_c
                unconditions_b['effnet'] = torch.zeros_like(sampled_c)
                print('STAGE B + A DECODING***************************')
                
                with torch.cuda.amp.autocast(dtype=dtype):
                        sampled = decode_b(conditions_b, unconditions_b, models_b, stage_b_latent_shape, extras_b, device, stage_a_tiled=args.stage_a_tiled)
                
                torch.cuda.empty_cache()
                imgs = show_images(sampled)
                #for idx, img in enumerate(imgs):
                    #print(os.path.join(save_dir, args.prompt[:20]+'_' + str(cnt).zfill(5) + '.jpg'), idx)
                    #img.save(os.path.join(save_dir, args.prompt[:20]+'_' + str(cnt).zfill(5) + '.jpg'))
                    
    return imgs[0]           
    #print('finished! Results ')


with gr.Blocks() as demo:
        with gr.Column():
            with gr.Row():
                with gr.Column():
                    height = gr.Slider(value=2304, step=32, minimum=1536, maximum=4096, label='Height')
                    width = gr.Slider(value=4096, step=32, minimum=1536, maximum=5120, label='Width')
                    seed = gr.Number(value=123, step=1, label='Random Seed')
                    prompt = gr.Textbox(value='', max_lines=4, label='Text Prompt')
                    cfg = gr.Slider(value=4, step=0.1, minimum=3, maximum=10, label='CFG')
                    timesteps = gr.Slider(value=20, step=1, minimum=10, maximum=50, label='Timesteps')
                    stage_a_tiled = gr.Checkbox(value=False, label='Stage_a_tiled')
                    with gr.Row():
                       clear_button = gr.Button("Clear!")
                    polish_button = gr.Button("Submit!") 
                with gr.Column():
                    output_img = gr.Image(label='Output Image', sources=None)
        with gr.Column():
            prompt2 = gr.Textbox(
                value='''
                1. a happy cat
                2. a happy girl
                ''', label='Text prompt examples'
            )
        
        polish_button.click(get_image, inputs=[height, width, seed, prompt, cfg, timesteps, stage_a_tiled], outputs=output_img)           
        polish_button.click(clear_image, inputs=[], outputs=output_img)
        
if __name__ == "__main__":
   
    args = parse_args()
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    
    config_file = args.config_c
    with open(config_file, "r", encoding="utf-8") as file:
        loaded_config = yaml.safe_load(file)
    
    core = WurstCoreC(config_dict=loaded_config, device=device, training=False)
    
    # SETUP STAGE B
    config_file_b = args.config_b
    with open(config_file_b, "r", encoding="utf-8") as file:
        config_file_b = yaml.safe_load(file)
        
    core_b = WurstCoreB(config_dict=config_file_b, device=device, training=False)
    
    extras = core.setup_extras_pre()
    models = core.setup_models(extras)
    models.generator.eval().requires_grad_(False)
    print("STAGE C READY")
    
    extras_b = core_b.setup_extras_pre()
    models_b = core_b.setup_models(extras_b, skip_clip=True)
    models_b = WurstCoreB.Models(
       **{**models_b.to_dict(), 'tokenizer': models.tokenizer, 'text_model': models.text_model}
    )
    models_b.generator.bfloat16().eval().requires_grad_(False)
    print("STAGE B READY")
    
    pretrained_path = args.pretrained_path    
    sdd = torch.load(pretrained_path, map_location='cpu')
    collect_sd = {}
    for k, v in sdd.items():
        collect_sd[k[7:]] = v
    
    models.train_norm.load_state_dict(collect_sd)
    models.generator.eval()
    models.train_norm.eval()
    
    
    demo.launch(
            debug=True, share=True, 
        )