File size: 10,349 Bytes
5231633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import numpy as np
import onnx, onnx2torch, cv2
import torch
from insightface.utils import face_align


class ArcFaceRecognizer:
    def __init__(self, model_file=None, device='cpu', dtype=torch.float32):
        assert model_file is not None
        self.model_file = model_file

        self.device = device
        self.dtype = dtype
        self.model = onnx2torch.convert(onnx.load(model_file)).to(device=device, dtype=dtype)
        for param in self.model.parameters():
            param.requires_grad = False
        self.model.eval()

        self.input_mean = 127.5
        self.input_std = 127.5
        self.input_size = (112, 112)
        self.input_shape = ['None', 3, 112, 112]

    def get(self, img, face):
        aimg = face_align.norm_crop(img, landmark=face.kps, image_size=self.input_size[0])
        face.embedding = self.get_feat(aimg).flatten()
        return face.embedding

    def compute_sim(self, feat1, feat2):
        from numpy.linalg import norm
        feat1 = feat1.ravel()
        feat2 = feat2.ravel()
        sim = np.dot(feat1, feat2) / (norm(feat1) * norm(feat2))
        return sim

    def get_feat(self, imgs):
        if not isinstance(imgs, list):
            imgs = [imgs]
        input_size = self.input_size

        blob = cv2.dnn.blobFromImages(imgs, 1.0 / self.input_std, input_size,
                                      (self.input_mean, self.input_mean, self.input_mean), swapRB=True)

        blob_torch = torch.tensor(blob).to(device=self.device, dtype=self.dtype)
        net_out = self.model(blob_torch)
        return net_out[0].float().cpu()


def distance2bbox(points, distance, max_shape=None):
    """Decode distance prediction to bounding box.

    Args:
        points (Tensor): Shape (n, 2), [x, y].
        distance (Tensor): Distance from the given point to 4
            boundaries (left, top, right, bottom).
        max_shape (tuple): Shape of the image.

    Returns:
        Tensor: Decoded bboxes.
    """
    x1 = points[:, 0] - distance[:, 0]
    y1 = points[:, 1] - distance[:, 1]
    x2 = points[:, 0] + distance[:, 2]
    y2 = points[:, 1] + distance[:, 3]
    if max_shape is not None:
        x1 = x1.clamp(min=0, max=max_shape[1])
        y1 = y1.clamp(min=0, max=max_shape[0])
        x2 = x2.clamp(min=0, max=max_shape[1])
        y2 = y2.clamp(min=0, max=max_shape[0])
    return np.stack([x1, y1, x2, y2], axis=-1)


def distance2kps(points, distance, max_shape=None):
    """Decode distance prediction to bounding box.

    Args:
        points (Tensor): Shape (n, 2), [x, y].
        distance (Tensor): Distance from the given point to 4
            boundaries (left, top, right, bottom).
        max_shape (tuple): Shape of the image.

    Returns:
        Tensor: Decoded bboxes.
    """
    preds = []
    for i in range(0, distance.shape[1], 2):
        px = points[:, i % 2] + distance[:, i]
        py = points[:, i % 2 + 1] + distance[:, i + 1]
        if max_shape is not None:
            px = px.clamp(min=0, max=max_shape[1])
            py = py.clamp(min=0, max=max_shape[0])
        preds.append(px)
        preds.append(py)
    return np.stack(preds, axis=-1)


class FaceDetector:
    def __init__(self, model_file=None, dtype=torch.float32, device='cuda'):
        self.model_file = model_file
        self.taskname = 'detection'
        self.center_cache = {}
        self.nms_thresh = 0.4
        self.det_thresh = 0.5

        self.device = device
        self.dtype = dtype
        self.model = onnx2torch.convert(onnx.load(model_file)).to(device=device, dtype=dtype)
        for param in self.model.parameters():
            param.requires_grad = False
        self.model.eval()

        input_shape = (320, 320)
        self.input_size = input_shape
        self.input_shape = input_shape

        self.input_mean = 127.5
        self.input_std = 128.0
        self._anchor_ratio = 1.0
        self._num_anchors = 1
        self.fmc = 3
        self._feat_stride_fpn = [8, 16, 32]
        self._num_anchors = 2
        self.use_kps = True

        self.det_thresh = 0.5
        self.nms_thresh = 0.4

    def forward(self, img, threshold):
        scores_list = []
        bboxes_list = []
        kpss_list = []
        input_size = tuple(img.shape[0:2][::-1])
        blob = cv2.dnn.blobFromImage(img, 1.0 / self.input_std, input_size,
                                     (self.input_mean, self.input_mean, self.input_mean), swapRB=True)
        blob_torch = torch.tensor(blob).to(device=self.device, dtype=self.dtype)
        net_outs_torch = self.model(blob_torch)
        # print(list(map(lambda x: x.shape, net_outs_torch)))
        net_outs = list(map(lambda x: x.float().cpu().numpy(), net_outs_torch))

        input_height = blob.shape[2]
        input_width = blob.shape[3]
        fmc = self.fmc
        for idx, stride in enumerate(self._feat_stride_fpn):
            scores = net_outs[idx]
            bbox_preds = net_outs[idx + fmc]
            bbox_preds = bbox_preds * stride
            if self.use_kps:
                kps_preds = net_outs[idx + fmc * 2] * stride
            height = input_height // stride
            width = input_width // stride
            K = height * width
            key = (height, width, stride)
            if key in self.center_cache:
                anchor_centers = self.center_cache[key]
            else:
                # solution-1, c style:
                # anchor_centers = np.zeros( (height, width, 2), dtype=np.float32 )
                # for i in range(height):
                #    anchor_centers[i, :, 1] = i
                # for i in range(width):
                #    anchor_centers[:, i, 0] = i

                # solution-2:
                # ax = np.arange(width, dtype=np.float32)
                # ay = np.arange(height, dtype=np.float32)
                # xv, yv = np.meshgrid(np.arange(width), np.arange(height))
                # anchor_centers = np.stack([xv, yv], axis=-1).astype(np.float32)

                # solution-3:
                anchor_centers = np.stack(np.mgrid[:height, :width][::-1], axis=-1).astype(np.float32)
                # print(anchor_centers.shape)

                anchor_centers = (anchor_centers * stride).reshape((-1, 2))
                if self._num_anchors > 1:
                    anchor_centers = np.stack([anchor_centers] * self._num_anchors, axis=1).reshape((-1, 2))
                if len(self.center_cache) < 100:
                    self.center_cache[key] = anchor_centers

            pos_inds = np.where(scores >= threshold)[0]
            bboxes = distance2bbox(anchor_centers, bbox_preds)
            pos_scores = scores[pos_inds]
            pos_bboxes = bboxes[pos_inds]
            scores_list.append(pos_scores)
            bboxes_list.append(pos_bboxes)
            if self.use_kps:
                kpss = distance2kps(anchor_centers, kps_preds)
                # kpss = kps_preds
                kpss = kpss.reshape((kpss.shape[0], -1, 2))
                pos_kpss = kpss[pos_inds]
                kpss_list.append(pos_kpss)
        return scores_list, bboxes_list, kpss_list

    def detect(self, img, input_size=None, max_num=0, metric='default'):
        assert input_size is not None or self.input_size is not None
        input_size = self.input_size if input_size is None else input_size

        im_ratio = float(img.shape[0]) / img.shape[1]
        model_ratio = float(input_size[1]) / input_size[0]
        if im_ratio > model_ratio:
            new_height = input_size[1]
            new_width = int(new_height / im_ratio)
        else:
            new_width = input_size[0]
            new_height = int(new_width * im_ratio)
        det_scale = float(new_height) / img.shape[0]
        resized_img = cv2.resize(img, (new_width, new_height))
        det_img = np.zeros((input_size[1], input_size[0], 3), dtype=np.uint8)
        det_img[:new_height, :new_width, :] = resized_img

        scores_list, bboxes_list, kpss_list = self.forward(det_img, self.det_thresh)

        scores = np.vstack(scores_list)
        scores_ravel = scores.ravel()
        order = scores_ravel.argsort()[::-1]
        bboxes = np.vstack(bboxes_list) / det_scale
        if self.use_kps:
            kpss = np.vstack(kpss_list) / det_scale
        pre_det = np.hstack((bboxes, scores)).astype(np.float32, copy=False)
        pre_det = pre_det[order, :]
        keep = self.nms(pre_det)
        det = pre_det[keep, :]
        if self.use_kps:
            kpss = kpss[order, :, :]
            kpss = kpss[keep, :, :]
        else:
            kpss = None
        if max_num > 0 and det.shape[0] > max_num:
            area = (det[:, 2] - det[:, 0]) * (det[:, 3] -
                                              det[:, 1])
            img_center = img.shape[0] // 2, img.shape[1] // 2
            offsets = np.vstack([
                (det[:, 0] + det[:, 2]) / 2 - img_center[1],
                (det[:, 1] + det[:, 3]) / 2 - img_center[0]
            ])
            offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
            if metric == 'max':
                values = area
            else:
                values = area - offset_dist_squared * 2.0  # some extra weight on the centering
            bindex = np.argsort(
                values)[::-1]  # some extra weight on the centering
            bindex = bindex[0:max_num]
            det = det[bindex, :]
            if kpss is not None:
                kpss = kpss[bindex, :]
        return det, kpss

    def nms(self, dets):
        thresh = self.nms_thresh
        x1 = dets[:, 0]
        y1 = dets[:, 1]
        x2 = dets[:, 2]
        y2 = dets[:, 3]
        scores = dets[:, 4]

        areas = (x2 - x1 + 1) * (y2 - y1 + 1)
        order = scores.argsort()[::-1]

        keep = []
        while order.size > 0:
            i = order[0]
            keep.append(i)
            xx1 = np.maximum(x1[i], x1[order[1:]])
            yy1 = np.maximum(y1[i], y1[order[1:]])
            xx2 = np.minimum(x2[i], x2[order[1:]])
            yy2 = np.minimum(y2[i], y2[order[1:]])

            w = np.maximum(0.0, xx2 - xx1 + 1)
            h = np.maximum(0.0, yy2 - yy1 + 1)
            inter = w * h
            ovr = inter / (areas[i] + areas[order[1:]] - inter)

            inds = np.where(ovr <= thresh)[0]
            order = order[inds + 1]

        return keep