File size: 2,297 Bytes
5231633 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
import torch
import torchvision
from torch import nn
from PIL import Image
import numpy as np
import os
# MICRO RESNET
class ResBlock(nn.Module):
def __init__(self, channels):
super(ResBlock, self).__init__()
self.resblock = nn.Sequential(
nn.ReflectionPad2d(1),
nn.Conv2d(channels, channels, kernel_size=3),
nn.InstanceNorm2d(channels, affine=True),
nn.ReLU(),
nn.ReflectionPad2d(1),
nn.Conv2d(channels, channels, kernel_size=3),
nn.InstanceNorm2d(channels, affine=True),
)
def forward(self, x):
out = self.resblock(x)
return out + x
class Upsample2d(nn.Module):
def __init__(self, scale_factor):
super(Upsample2d, self).__init__()
self.interp = nn.functional.interpolate
self.scale_factor = scale_factor
def forward(self, x):
x = self.interp(x, scale_factor=self.scale_factor, mode='nearest')
return x
class MicroResNet(nn.Module):
def __init__(self):
super(MicroResNet, self).__init__()
self.downsampler = nn.Sequential(
nn.ReflectionPad2d(4),
nn.Conv2d(3, 8, kernel_size=9, stride=4),
nn.InstanceNorm2d(8, affine=True),
nn.ReLU(),
nn.ReflectionPad2d(1),
nn.Conv2d(8, 16, kernel_size=3, stride=2),
nn.InstanceNorm2d(16, affine=True),
nn.ReLU(),
nn.ReflectionPad2d(1),
nn.Conv2d(16, 32, kernel_size=3, stride=2),
nn.InstanceNorm2d(32, affine=True),
nn.ReLU(),
)
self.residual = nn.Sequential(
ResBlock(32),
nn.Conv2d(32, 64, kernel_size=1, bias=False, groups=32),
ResBlock(64),
)
self.segmentator = nn.Sequential(
nn.ReflectionPad2d(1),
nn.Conv2d(64, 16, kernel_size=3),
nn.InstanceNorm2d(16, affine=True),
nn.ReLU(),
Upsample2d(scale_factor=2),
nn.ReflectionPad2d(4),
nn.Conv2d(16, 1, kernel_size=9),
nn.Sigmoid()
)
def forward(self, x):
out = self.downsampler(x)
out = self.residual(out)
out = self.segmentator(out)
return out
|