File size: 7,479 Bytes
5231633 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import os
import yaml
import torch
import torchvision
from tqdm import tqdm
import sys
sys.path.append(os.path.abspath('./'))
from inference.utils import *
from core.utils import load_or_fail
from train import WurstCore_control_lrguide, WurstCoreB
from PIL import Image
from core.utils import load_or_fail
import math
import argparse
import time
import random
import numpy as np
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument( '--height', type=int, default=3840, help='image height')
parser.add_argument('--width', type=int, default=2160, help='image width')
parser.add_argument('--control_weight', type=float, default=0.70, help='[ 0.3, 0.8]')
parser.add_argument('--dtype', type=str, default='bf16', help=' if bf16 does not work, change it to float32 ')
parser.add_argument('--seed', type=int, default=123, help='random seed')
parser.add_argument('--config_c', type=str,
default='configs/training/cfg_control_lr.yaml' ,help='config file for stage c, latent generation')
parser.add_argument('--config_b', type=str,
default='configs/inference/stage_b_1b.yaml' ,help='config file for stage b, latent decoding')
parser.add_argument( '--prompt', type=str,
default='A peaceful lake surrounded by mountain, white cloud in the sky, high quality,', help='text prompt')
parser.add_argument( '--num_image', type=int, default=4, help='how many images generated')
parser.add_argument( '--output_dir', type=str, default='figures/controlnet_results/', help='output directory for generated image')
parser.add_argument( '--stage_a_tiled', action='store_true', help='whther or nor to use tiled decoding for stage a to save memory')
parser.add_argument( '--pretrained_path', type=str, default='models/ultrapixel_t2i.safetensors', help='pretrained path of newly added paramter of UltraPixel')
parser.add_argument( '--canny_source_url', type=str, default="figures/California_000490.jpg", help='image used to extract canny edge map')
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
width = args.width
height = args.height
torch.manual_seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
dtype = torch.bfloat16 if args.dtype == 'bf16' else torch.float
# SETUP STAGE C
with open(args.config_c, "r", encoding="utf-8") as file:
loaded_config = yaml.safe_load(file)
core = WurstCore_control_lrguide(config_dict=loaded_config, device=device, training=False)
# SETUP STAGE B
with open(args.config_b, "r", encoding="utf-8") as file:
config_file_b = yaml.safe_load(file)
core_b = WurstCoreB(config_dict=config_file_b, device=device, training=False)
extras = core.setup_extras_pre()
models = core.setup_models(extras)
models.generator.eval().requires_grad_(False)
print("CONTROLNET READY")
extras_b = core_b.setup_extras_pre()
models_b = core_b.setup_models(extras_b, skip_clip=True)
models_b = WurstCoreB.Models(
**{**models_b.to_dict(), 'tokenizer': models.tokenizer, 'text_model': models.text_model}
)
models_b.generator.eval().requires_grad_(False)
print("STAGE B READY")
batch_size = 1
save_dir = args.output_dir
url = args.canny_source_url
images = resize_image(Image.open(url).convert("RGB")).unsqueeze(0).expand(batch_size, -1, -1, -1)
batch = {'images': images}
cnet_multiplier = args.control_weight # 0.8 0.6 0.3 control strength
caption_list = [args.prompt] * args.num_image
height_lr, width_lr = get_target_lr_size(height / width, std_size=32)
stage_c_latent_shape_lr, stage_b_latent_shape_lr = calculate_latent_sizes(height_lr, width_lr, batch_size=batch_size)
stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
sdd = torch.load(args.pretrained_path, map_location='cpu')
collect_sd = {}
for k, v in sdd.items():
collect_sd[k[7:]] = v
models.train_norm.load_state_dict(collect_sd, strict=True)
models.controlnet.load_state_dict(load_or_fail(core.config.controlnet_checkpoint_path), strict=True)
# Stage C Parameters
extras.sampling_configs['cfg'] = 1
extras.sampling_configs['shift'] = 2
extras.sampling_configs['timesteps'] = 20
extras.sampling_configs['t_start'] = 1.0
# Stage B Parameters
extras_b.sampling_configs['cfg'] = 1.1
extras_b.sampling_configs['shift'] = 1
extras_b.sampling_configs['timesteps'] = 10
extras_b.sampling_configs['t_start'] = 1.0
# PREPARE CONDITIONS
for out_cnt, caption in enumerate(caption_list):
with torch.no_grad():
batch['captions'] = [caption + ' high quality'] * batch_size
conditions = core.get_conditions(batch, models, extras, is_eval=True, is_unconditional=False, eval_image_embeds=False)
unconditions = core.get_conditions(batch, models, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False)
cnet, cnet_input = core.get_cnet(batch, models, extras)
cnet_uncond = cnet
conditions['cnet'] = [c.clone() * cnet_multiplier if c is not None else c for c in cnet]
unconditions['cnet'] = [c.clone() * cnet_multiplier if c is not None else c for c in cnet_uncond]
edge_images = show_images(cnet_input)
models.generator.cuda()
for idx, img in enumerate(edge_images):
img.save(os.path.join(save_dir, f"edge_{url.split('/')[-1]}"))
print('STAGE C GENERATION***************************')
with torch.cuda.amp.autocast(dtype=dtype):
sampled_c = generation_c(batch, models, extras, core, stage_c_latent_shape, stage_c_latent_shape_lr, device, conditions, unconditions)
models.generator.cpu()
torch.cuda.empty_cache()
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
conditions_b['effnet'] = sampled_c
unconditions_b['effnet'] = torch.zeros_like(sampled_c)
print('STAGE B + A DECODING***************************')
with torch.cuda.amp.autocast(dtype=dtype):
sampled = decode_b(conditions_b, unconditions_b, models_b, stage_b_latent_shape, extras_b, device, stage_a_tiled=args.stage_a_tiled)
torch.cuda.empty_cache()
imgs = show_images(sampled)
for idx, img in enumerate(imgs):
img.save(os.path.join(save_dir, args.prompt[:20]+'_' + str(out_cnt).zfill(5) + '.jpg'))
print('finished! Results at ', save_dir )
|