File size: 6,845 Bytes
5231633 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import torch
from torch import nn
from torchtools.nn import VectorQuantize
from einops import rearrange
import torch.nn.functional as F
import math
class ResBlock(nn.Module):
def __init__(self, c, c_hidden):
super().__init__()
# depthwise/attention
self.norm1 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6)
self.depthwise = nn.Sequential(
nn.ReplicationPad2d(1),
nn.Conv2d(c, c, kernel_size=3, groups=c)
)
# channelwise
self.norm2 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6)
self.channelwise = nn.Sequential(
nn.Linear(c, c_hidden),
nn.GELU(),
nn.Linear(c_hidden, c),
)
self.gammas = nn.Parameter(torch.zeros(6), requires_grad=True)
# Init weights
def _basic_init(module):
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
def _norm(self, x, norm):
return norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
def forward(self, x):
mods = self.gammas
x_temp = self._norm(x, self.norm1) * (1 + mods[0]) + mods[1]
#x = x.to(torch.float64)
x = x + self.depthwise(x_temp) * mods[2]
x_temp = self._norm(x, self.norm2) * (1 + mods[3]) + mods[4]
x = x + self.channelwise(x_temp.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) * mods[5]
return x
def extract_patches(tensor, patch_size, stride):
b, c, H, W = tensor.shape
pad_h = (patch_size - (H - patch_size) % stride) % stride
pad_w = (patch_size - (W - patch_size) % stride) % stride
tensor = F.pad(tensor, (0, pad_w, 0, pad_h), mode='reflect')
patches = tensor.unfold(2, patch_size, stride).unfold(3, patch_size, stride)
patches = patches.contiguous().view(b, c, -1, patch_size, patch_size)
patches = patches.permute(0, 2, 1, 3, 4)
return patches, (H, W)
def fuse_patches(patches, patch_size, stride, H, W):
b, num_patches, c, _, _ = patches.shape
patches = patches.permute(0, 2, 1, 3, 4)
pad_h = (patch_size - (H - patch_size) % stride) % stride
pad_w = (patch_size - (W - patch_size) % stride) % stride
out_h = H + pad_h
out_w = W + pad_w
patches = patches.contiguous().view(b, c , -1, patch_size*patch_size ).permute(0, 1, 3, 2)
patches = patches.contiguous().view(b, c*patch_size*patch_size, -1)
tensor = F.fold(patches, output_size=(out_h, out_w), kernel_size=patch_size, stride=stride)
overlap_cnt = F.fold(torch.ones_like(patches), output_size=(out_h, out_w), kernel_size=patch_size, stride=stride)
tensor = tensor / overlap_cnt
print('end fuse patch', tensor.shape, (tensor.dtype))
return tensor[:, :, :H, :W]
class StageA(nn.Module):
def __init__(self, levels=2, bottleneck_blocks=12, c_hidden=384, c_latent=4, codebook_size=8192,
scale_factor=0.43): # 0.3764
super().__init__()
self.c_latent = c_latent
self.scale_factor = scale_factor
c_levels = [c_hidden // (2 ** i) for i in reversed(range(levels))]
# Encoder blocks
self.in_block = nn.Sequential(
nn.PixelUnshuffle(2),
nn.Conv2d(3 * 4, c_levels[0], kernel_size=1)
)
down_blocks = []
for i in range(levels):
if i > 0:
down_blocks.append(nn.Conv2d(c_levels[i - 1], c_levels[i], kernel_size=4, stride=2, padding=1))
block = ResBlock(c_levels[i], c_levels[i] * 4)
down_blocks.append(block)
down_blocks.append(nn.Sequential(
nn.Conv2d(c_levels[-1], c_latent, kernel_size=1, bias=False),
nn.BatchNorm2d(c_latent), # then normalize them to have mean 0 and std 1
))
self.down_blocks = nn.Sequential(*down_blocks)
self.down_blocks[0]
self.codebook_size = codebook_size
self.vquantizer = VectorQuantize(c_latent, k=codebook_size)
# Decoder blocks
up_blocks = [nn.Sequential(
nn.Conv2d(c_latent, c_levels[-1], kernel_size=1)
)]
for i in range(levels):
for j in range(bottleneck_blocks if i == 0 else 1):
block = ResBlock(c_levels[levels - 1 - i], c_levels[levels - 1 - i] * 4)
up_blocks.append(block)
if i < levels - 1:
up_blocks.append(
nn.ConvTranspose2d(c_levels[levels - 1 - i], c_levels[levels - 2 - i], kernel_size=4, stride=2,
padding=1))
self.up_blocks = nn.Sequential(*up_blocks)
self.out_block = nn.Sequential(
nn.Conv2d(c_levels[0], 3 * 4, kernel_size=1),
nn.PixelShuffle(2),
)
def encode(self, x, quantize=False):
x = self.in_block(x)
x = self.down_blocks(x)
if quantize:
qe, (vq_loss, commit_loss), indices = self.vquantizer.forward(x, dim=1)
return qe / self.scale_factor, x / self.scale_factor, indices, vq_loss + commit_loss * 0.25
else:
return x / self.scale_factor, None, None, None
def decode(self, x, tiled_decoding=False):
x = x * self.scale_factor
x = self.up_blocks(x)
x = self.out_block(x)
return x
def forward(self, x, quantize=False):
qe, x, _, vq_loss = self.encode(x, quantize)
x = self.decode(qe)
return x, vq_loss
class Discriminator(nn.Module):
def __init__(self, c_in=3, c_cond=0, c_hidden=512, depth=6):
super().__init__()
d = max(depth - 3, 3)
layers = [
nn.utils.spectral_norm(nn.Conv2d(c_in, c_hidden // (2 ** d), kernel_size=3, stride=2, padding=1)),
nn.LeakyReLU(0.2),
]
for i in range(depth - 1):
c_in = c_hidden // (2 ** max((d - i), 0))
c_out = c_hidden // (2 ** max((d - 1 - i), 0))
layers.append(nn.utils.spectral_norm(nn.Conv2d(c_in, c_out, kernel_size=3, stride=2, padding=1)))
layers.append(nn.InstanceNorm2d(c_out))
layers.append(nn.LeakyReLU(0.2))
self.encoder = nn.Sequential(*layers)
self.shuffle = nn.Conv2d((c_hidden + c_cond) if c_cond > 0 else c_hidden, 1, kernel_size=1)
self.logits = nn.Sigmoid()
def forward(self, x, cond=None):
x = self.encoder(x)
if cond is not None:
cond = cond.view(cond.size(0), cond.size(1), 1, 1, ).expand(-1, -1, x.size(-2), x.size(-1))
x = torch.cat([x, cond], dim=1)
x = self.shuffle(x)
x = self.logits(x)
return x
|