File size: 11,580 Bytes
045e583
3739851
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d41b366
3739851
d41b366
3739851
 
 
553a69c
3739851
 
553a69c
3739851
 
553a69c
3739851
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import os
import yaml
import torch
import sys
sys.path.append(os.path.abspath('./'))
from inference.utils import *
from train import WurstCoreB
from gdf import DDPMSampler
from train import WurstCore_t2i as WurstCoreC
import numpy as np
import random
import argparse
import gradio as gr
import spaces
from huggingface_hub import hf_hub_url
import subprocess
from huggingface_hub import hf_hub_download
from transformers import pipeline

# Initialize the translation pipeline
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")

def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('--height', type=int, default=2560, help='image height')
    parser.add_argument('--width', type=int, default=5120, help='image width')
    parser.add_argument('--seed', type=int, default=123, help='random seed')
    parser.add_argument('--dtype', type=str, default='bf16', help='if bf16 does not work, change it to float32')
    parser.add_argument('--config_c', type=str, 
    default='configs/training/t2i.yaml', help='config file for stage c, latent generation')
    parser.add_argument('--config_b', type=str, 
    default='configs/inference/stage_b_1b.yaml', help='config file for stage b, latent decoding')
    parser.add_argument('--prompt', type=str,
     default='A photo-realistic image of a west highland white terrier in the garden, high quality, detail rich, 8K', help='text prompt')
    parser.add_argument('--num_image', type=int, default=1, help='how many images generated')
    parser.add_argument('--output_dir', type=str, default='figures/output_results/', help='output directory for generated image')
    parser.add_argument('--stage_a_tiled', action='store_true', help='whether or not to use tiled decoding for stage a to save memory')
    parser.add_argument('--pretrained_path', type=str, default='models/ultrapixel_t2i.safetensors', help='pretrained path of newly added parameter of UltraPixel')
    args = parser.parse_args()
    return args

def clear_image():
    return None

def load_message(height, width, seed, prompt, args, stage_a_tiled):
    args.height = height
    args.width = width
    args.seed = seed
    args.prompt = prompt + ' rich detail, 4k, high quality'
    args.stage_a_tiled = stage_a_tiled
    return args

def is_korean(text):
    return any('\uac00' <= char <= '\ud7a3' for char in text)

def translate_if_korean(text):
    if is_korean(text):
        translated = translator(text, max_length=512)[0]['translation_text']
        print(f"Translated from Korean: {text} -> {translated}")
        return translated
    return text

@spaces.GPU(duration=120)
def get_image(height, width, seed, prompt, cfg, timesteps, stage_a_tiled):
    global args
    
    # Translate the prompt if it's in Korean
    prompt = translate_if_korean(prompt)
    
    args = load_message(height, width, seed, prompt, args, stage_a_tiled)
    torch.manual_seed(args.seed)
    random.seed(args.seed) 
    np.random.seed(args.seed)
    dtype = torch.bfloat16 if args.dtype == 'bf16' else torch.float

    captions = [args.prompt] * args.num_image
    height, width = args.height, args.width
    batch_size = 1 
    height_lr, width_lr = get_target_lr_size(height / width, std_size=32)
    stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
    stage_c_latent_shape_lr, stage_b_latent_shape_lr = calculate_latent_sizes(height_lr, width_lr, batch_size=batch_size)
   
    # Stage C Parameters
    extras.sampling_configs['cfg'] = 4
    extras.sampling_configs['shift'] = 1
    extras.sampling_configs['timesteps'] = 20
    extras.sampling_configs['t_start'] = 1.0
    extras.sampling_configs['sampler'] = DDPMSampler(extras.gdf)
    
    # Stage B Parameters
    extras_b.sampling_configs['cfg'] = 1.1
    extras_b.sampling_configs['shift'] = 1
    extras_b.sampling_configs['timesteps'] = 10
    extras_b.sampling_configs['t_start'] = 1.0

    for _, caption in enumerate(captions):
        batch = {'captions': [caption] * batch_size}
        conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
        unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
        
        with torch.no_grad():
            models.generator.cuda()
            print('STAGE C GENERATION***************************')
            with torch.cuda.amp.autocast(dtype=dtype):
                sampled_c = generation_c(batch, models, extras, core, stage_c_latent_shape, stage_c_latent_shape_lr, device)
            
            models.generator.cpu()
            torch.cuda.empty_cache()
            
            conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
            unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
            conditions_b['effnet'] = sampled_c
            unconditions_b['effnet'] = torch.zeros_like(sampled_c)
            print('STAGE B + A DECODING***************************')
            
            with torch.cuda.amp.autocast(dtype=dtype):
                sampled = decode_b(conditions_b, unconditions_b, models_b, stage_b_latent_shape, extras_b, device, stage_a_tiled=args.stage_a_tiled)
            
            torch.cuda.empty_cache()
            imgs = show_images(sampled)
                    
    return imgs[0]           

css = """
footer {
    visibility: hidden;
}
"""

with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("<h1><center>UHD(MAX 5120 X 4096 Pixel) Image Gen</center></h1>")
        
        with gr.Row():
            prompt = gr.Textbox(
                label="Text Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt in Korean or English",
                container=False
            )
            polish_button = gr.Button("Submit", scale=0)
        
        output_img = gr.Image(label="Output Image", show_label=False)
        
        with gr.Accordion("Advanced Settings", open=False):
            seed = gr.Number(
                label="Random Seed",
                value=123,
                step=1,
                minimum=0,
            )
            
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=1536,
                    maximum=5120,
                    step=32,
                    value=4096
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=1536,
                    maximum=4096,
                    step=32,
                    value=2304
                )
            
            with gr.Row():
                cfg = gr.Slider(
                    label="CFG",
                    minimum=3,
                    maximum=10,
                    step=0.1,
                    value=4
                )
                
                timesteps = gr.Slider(
                    label="Timesteps",
                    minimum=10,
                    maximum=50,
                    step=1,
                    value=20
                )
            
            stage_a_tiled = gr.Checkbox(label="Stage_a_tiled", value=False)
        
        clear_button = gr.Button("Clear!")
        
        gr.Examples(
            examples=[
                "A detailed view of a blooming magnolia tree, with large, white flowers and dark green leaves, set against a clear blue sky.",
                "๋ˆˆ ๋ฎ์ธ ์‚ฐ๋งฅ์˜ ์žฅ์—„ํ•œ ์ „๊ฒฝ, ํ‘ธ๋ฅธ ํ•˜๋Š˜์„ ๋ฐฐ๊ฒฝ์œผ๋กœ ํ•œ ๊ณ ์š”ํ•œ ํ˜ธ์ˆ˜๊ฐ€ ์žˆ๋Š” ๋ชจ์Šต",
                "The image features a snow-covered mountain range with a large, snow-covered mountain in the background. The mountain is surrounded by a forest of trees, and the sky is filled with clouds. The scene is set during the winter season, with snow covering the ground and the trees.",
                "์Šค์›จํ„ฐ๋ฅผ ์ž…์€ ์•…์–ด",
                "A vibrant anime scene of a young girl with long, flowing pink hair, big sparkling blue eyes, and a school uniform, standing under a cherry blossom tree with petals falling around her. The background shows a traditional Japanese school with cherry blossoms in full bloom.",
                "๊ณจ๋“  ๋ฆฌํŠธ๋ฆฌ๋ฒ„ ๊ฐ•์•„์ง€๊ฐ€ ํ‘ธ๋ฅธ ์ž”๋””๋ฐญ์—์„œ ๋นจ๊ฐ„ ๊ณต์„ ์ซ“๋Š” ๊ท€์—ฌ์šด ๋ชจ์Šต",
                "A cozy, rustic log cabin nestled in a snow-covered forest, with smoke rising from the stone chimney, warm lights glowing from the windows, and a path of footprints leading to the front door.",
            ],
            inputs=[prompt],
            outputs=[output_img],
            examples_per_page=5
        )
        
        polish_button.click(get_image, inputs=[height, width, seed, prompt, cfg, timesteps, stage_a_tiled], outputs=output_img)           
        polish_button.click(clear_image, inputs=[], outputs=output_img)

def download_with_wget(url, save_path):
    try:
        subprocess.run(['wget', url, '-O', save_path], check=True)
        print(f"Downloaded to {save_path}")
    except subprocess.CalledProcessError as e:
        print(f"Error downloading file: {e}")

def download_model():
    urls = [
        'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_a.safetensors',
        'https://huggingface.co/stabilityai/StableWurst/resolve/main/previewer.safetensors',
        'https://huggingface.co/stabilityai/StableWurst/resolve/main/effnet_encoder.safetensors',
        'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_b_lite_bf16.safetensors', 
        'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_c_bf16.safetensors', 
    ]
    for file_url in urls:
        hf_hub_download(repo_id="stabilityai/stable-cascade", filename=file_url.split('/')[-1], local_dir='models')
    hf_hub_download(repo_id="roubaofeipi/UltraPixel", filename='ultrapixel_t2i.safetensors', local_dir='models')
    
if __name__ == "__main__":
    args = parse_args()
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    download_model()
    config_file = args.config_c
    with open(config_file, "r", encoding="utf-8") as file:
        loaded_config = yaml.safe_load(file)
    
    core = WurstCoreC(config_dict=loaded_config, device=device, training=False)
    
    # SETUP STAGE B
    config_file_b = args.config_b
    with open(config_file_b, "r", encoding="utf-8") as file:
        config_file_b = yaml.safe_load(file)
        
    core_b = WurstCoreB(config_dict=config_file_b, device=device, training=False)
    
    extras = core.setup_extras_pre()
    models = core.setup_models(extras)
    models.generator.eval().requires_grad_(False)
    print("STAGE C READY")
    
    extras_b = core_b.setup_extras_pre()
    models_b = core_b.setup_models(extras_b, skip_clip=True)
    models_b = WurstCoreB.Models(
       **{**models_b.to_dict(), 'tokenizer': models.tokenizer, 'text_model': models.text_model}
    )
    models_b.generator.bfloat16().eval().requires_grad_(False)
    print("STAGE B READY")
    
    pretrained_path = args.pretrained_path    
    sdd = torch.load(pretrained_path, map_location='cpu')
    collect_sd = {}
    for k, v in sdd.items():
        collect_sd[k[7:]] = v
    
    models.train_norm.load_state_dict(collect_sd)
    models.generator.eval()
    models.train_norm.eval()
    
    demo.launch(debug=True, share=True)