File size: 11,344 Bytes
5231633 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import torch
from .scalers import *
from .targets import *
from .schedulers import *
from .noise_conditions import *
from .loss_weights import *
from .samplers import *
import torch.nn.functional as F
import math
class GDF():
def __init__(self, schedule, input_scaler, target, noise_cond, loss_weight, offset_noise=0):
self.schedule = schedule
self.input_scaler = input_scaler
self.target = target
self.noise_cond = noise_cond
self.loss_weight = loss_weight
self.offset_noise = offset_noise
def setup_limits(self, stretch_max=True, stretch_min=True, shift=1):
stretched_limits = self.input_scaler.setup_limits(self.schedule, self.input_scaler, stretch_max, stretch_min, shift)
return stretched_limits
def diffuse(self, x0, epsilon=None, t=None, shift=1, loss_shift=1, offset=None):
if epsilon is None:
epsilon = torch.randn_like(x0)
if self.offset_noise > 0:
if offset is None:
offset = torch.randn([x0.size(0), x0.size(1)] + [1]*(len(x0.shape)-2)).to(x0.device)
epsilon = epsilon + offset * self.offset_noise
logSNR = self.schedule(x0.size(0) if t is None else t, shift=shift).to(x0.device)
a, b = self.input_scaler(logSNR) # B
if len(a.shape) == 1:
a, b = a.view(-1, *[1]*(len(x0.shape)-1)), b.view(-1, *[1]*(len(x0.shape)-1)) # BxCxHxW
#print('in line 33 a b', a.shape, b.shape, x0.shape, logSNR.shape, logSNR, self.noise_cond(logSNR))
target = self.target(x0, epsilon, logSNR, a, b)
# noised, noise, logSNR, t_cond
#noised, noise, target, logSNR, noise_cond, loss_weight
return x0 * a + epsilon * b, epsilon, target, logSNR, self.noise_cond(logSNR), self.loss_weight(logSNR, shift=loss_shift)
def undiffuse(self, x, logSNR, pred):
a, b = self.input_scaler(logSNR)
if len(a.shape) == 1:
a, b = a.view(-1, *[1]*(len(x.shape)-1)), b.view(-1, *[1]*(len(x.shape)-1))
return self.target.x0(x, pred, logSNR, a, b), self.target.epsilon(x, pred, logSNR, a, b)
def sample(self, model, model_inputs, shape, unconditional_inputs=None, sampler=None, schedule=None, t_start=1.0, t_end=0.0, timesteps=20, x_init=None, cfg=3.0, cfg_t_stop=None, cfg_t_start=None, cfg_rho=0.7, sampler_params=None, shift=1, device="cpu"):
sampler_params = {} if sampler_params is None else sampler_params
if sampler is None:
sampler = DDPMSampler(self)
r_range = torch.linspace(t_start, t_end, timesteps+1)
schedule = self.schedule if schedule is None else schedule
logSNR_range = schedule(r_range, shift=shift)[:, None].expand(
-1, shape[0] if x_init is None else x_init.size(0)
).to(device)
x = sampler.init_x(shape).to(device) if x_init is None else x_init.clone()
if cfg is not None:
if unconditional_inputs is None:
unconditional_inputs = {k: torch.zeros_like(v) for k, v in model_inputs.items()}
model_inputs = {
k: torch.cat([v, v_u], dim=0) if isinstance(v, torch.Tensor)
else [torch.cat([vi, vi_u], dim=0) if isinstance(vi, torch.Tensor) and isinstance(vi_u, torch.Tensor) else None for vi, vi_u in zip(v, v_u)] if isinstance(v, list)
else {vk: torch.cat([v[vk], v_u.get(vk, torch.zeros_like(v[vk]))], dim=0) for vk in v} if isinstance(v, dict)
else None for (k, v), (k_u, v_u) in zip(model_inputs.items(), unconditional_inputs.items())
}
for i in range(0, timesteps):
noise_cond = self.noise_cond(logSNR_range[i])
if cfg is not None and (cfg_t_stop is None or r_range[i].item() >= cfg_t_stop) and (cfg_t_start is None or r_range[i].item() <= cfg_t_start):
cfg_val = cfg
if isinstance(cfg_val, (list, tuple)):
assert len(cfg_val) == 2, "cfg must be a float or a list/tuple of length 2"
cfg_val = cfg_val[0] * r_range[i].item() + cfg_val[1] * (1-r_range[i].item())
pred, pred_unconditional = model(torch.cat([x, x], dim=0), noise_cond.repeat(2), **model_inputs).chunk(2)
pred_cfg = torch.lerp(pred_unconditional, pred, cfg_val)
if cfg_rho > 0:
std_pos, std_cfg = pred.std(), pred_cfg.std()
pred = cfg_rho * (pred_cfg * std_pos/(std_cfg+1e-9)) + pred_cfg * (1-cfg_rho)
else:
pred = pred_cfg
else:
pred = model(x, noise_cond, **model_inputs)
x0, epsilon = self.undiffuse(x, logSNR_range[i], pred)
x = sampler(x, x0, epsilon, logSNR_range[i], logSNR_range[i+1], **sampler_params)
#print('in line 86', x0.shape, x.shape, i, )
altered_vars = yield (x0, x, pred)
# Update some running variables if the user wants
if altered_vars is not None:
cfg = altered_vars.get('cfg', cfg)
cfg_rho = altered_vars.get('cfg_rho', cfg_rho)
sampler = altered_vars.get('sampler', sampler)
model_inputs = altered_vars.get('model_inputs', model_inputs)
x = altered_vars.get('x', x)
x_init = altered_vars.get('x_init', x_init)
class GDF_dual_fixlrt(GDF):
def ref_noise(self, noised, x0, logSNR):
a, b = self.input_scaler(logSNR)
if len(a.shape) == 1:
a, b = a.view(-1, *[1]*(len(x0.shape)-1)), b.view(-1, *[1]*(len(x0.shape)-1))
#print('in line 210', a.shape, b.shape, x0.shape, noised.shape)
return self.target.noise_givenx0_noised(x0, noised, logSNR, a, b)
def sample(self, model, model_inputs, shape, shape_lr, unconditional_inputs=None, sampler=None,
schedule=None, t_start=1.0, t_end=0.0, timesteps=20, x_init=None, cfg=3.0, cfg_t_stop=None,
cfg_t_start=None, cfg_rho=0.7, sampler_params=None, shift=1, device="cpu"):
sampler_params = {} if sampler_params is None else sampler_params
if sampler is None:
sampler = DDPMSampler(self)
r_range = torch.linspace(t_start, t_end, timesteps+1)
schedule = self.schedule if schedule is None else schedule
logSNR_range = schedule(r_range, shift=shift)[:, None].expand(
-1, shape[0] if x_init is None else x_init.size(0)
).to(device)
x = sampler.init_x(shape).to(device) if x_init is None else x_init.clone()
x_lr = sampler.init_x(shape_lr).to(device) if x_init is None else x_init.clone()
if cfg is not None:
if unconditional_inputs is None:
unconditional_inputs = {k: torch.zeros_like(v) for k, v in model_inputs.items()}
model_inputs = {
k: torch.cat([v, v_u], dim=0) if isinstance(v, torch.Tensor)
else [torch.cat([vi, vi_u], dim=0) if isinstance(vi, torch.Tensor) and isinstance(vi_u, torch.Tensor) else None for vi, vi_u in zip(v, v_u)] if isinstance(v, list)
else {vk: torch.cat([v[vk], v_u.get(vk, torch.zeros_like(v[vk]))], dim=0) for vk in v} if isinstance(v, dict)
else None for (k, v), (k_u, v_u) in zip(model_inputs.items(), unconditional_inputs.items())
}
###############################################lr sampling
guide_feas = [None] * timesteps
for i in range(0, timesteps):
noise_cond = self.noise_cond(logSNR_range[i])
if cfg is not None and (cfg_t_stop is None or r_range[i].item() >= cfg_t_stop) and (cfg_t_start is None or r_range[i].item() <= cfg_t_start):
cfg_val = cfg
if isinstance(cfg_val, (list, tuple)):
assert len(cfg_val) == 2, "cfg must be a float or a list/tuple of length 2"
cfg_val = cfg_val[0] * r_range[i].item() + cfg_val[1] * (1-r_range[i].item())
if i == timesteps -1 :
output, guide_lr_enc, guide_lr_dec = model(torch.cat([x_lr, x_lr], dim=0), noise_cond.repeat(2), reuire_f=True, **model_inputs)
guide_feas[i] = ([f.chunk(2)[0].repeat(2, 1, 1, 1) for f in guide_lr_enc], [f.chunk(2)[0].repeat(2, 1, 1, 1) for f in guide_lr_dec])
else:
output, _, _ = model(torch.cat([x_lr, x_lr], dim=0), noise_cond.repeat(2), reuire_f=True, **model_inputs)
pred, pred_unconditional = output.chunk(2)
pred_cfg = torch.lerp(pred_unconditional, pred, cfg_val)
if cfg_rho > 0:
std_pos, std_cfg = pred.std(), pred_cfg.std()
pred = cfg_rho * (pred_cfg * std_pos/(std_cfg+1e-9)) + pred_cfg * (1-cfg_rho)
else:
pred = pred_cfg
else:
pred = model(x_lr, noise_cond, **model_inputs)
x0_lr, epsilon_lr = self.undiffuse(x_lr, logSNR_range[i], pred)
x_lr = sampler(x_lr, x0_lr, epsilon_lr, logSNR_range[i], logSNR_range[i+1], **sampler_params)
###############################################hr HR sampling
for i in range(0, timesteps):
noise_cond = self.noise_cond(logSNR_range[i])
if cfg is not None and (cfg_t_stop is None or r_range[i].item() >= cfg_t_stop) and (cfg_t_start is None or r_range[i].item() <= cfg_t_start):
cfg_val = cfg
if isinstance(cfg_val, (list, tuple)):
assert len(cfg_val) == 2, "cfg must be a float or a list/tuple of length 2"
cfg_val = cfg_val[0] * r_range[i].item() + cfg_val[1] * (1-r_range[i].item())
out_pred, t_emb = model(torch.cat([x, x], dim=0), noise_cond.repeat(2), \
lr_guide=guide_feas[timesteps -1] if i <=19 else None , **model_inputs, require_t=True, guide_weight=1 - i/timesteps)
pred, pred_unconditional = out_pred.chunk(2)
pred_cfg = torch.lerp(pred_unconditional, pred, cfg_val)
if cfg_rho > 0:
std_pos, std_cfg = pred.std(), pred_cfg.std()
pred = cfg_rho * (pred_cfg * std_pos/(std_cfg+1e-9)) + pred_cfg * (1-cfg_rho)
else:
pred = pred_cfg
else:
pred = model(x, noise_cond, guide_lr=(guide_lr_enc, guide_lr_dec), **model_inputs)
x0, epsilon = self.undiffuse(x, logSNR_range[i], pred)
x = sampler(x, x0, epsilon, logSNR_range[i], logSNR_range[i+1], **sampler_params)
altered_vars = yield (x0, x, pred, x_lr)
# Update some running variables if the user wants
if altered_vars is not None:
cfg = altered_vars.get('cfg', cfg)
cfg_rho = altered_vars.get('cfg_rho', cfg_rho)
sampler = altered_vars.get('sampler', sampler)
model_inputs = altered_vars.get('model_inputs', model_inputs)
x = altered_vars.get('x', x)
x_init = altered_vars.get('x_init', x_init)
|