File size: 1,784 Bytes
5231633 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import torch
class SimpleSampler():
def __init__(self, gdf):
self.gdf = gdf
self.current_step = -1
def __call__(self, *args, **kwargs):
self.current_step += 1
return self.step(*args, **kwargs)
def init_x(self, shape):
return torch.randn(*shape)
def step(self, x, x0, epsilon, logSNR, logSNR_prev):
raise NotImplementedError("You should override the 'apply' function.")
class DDIMSampler(SimpleSampler):
def step(self, x, x0, epsilon, logSNR, logSNR_prev, eta=0):
a, b = self.gdf.input_scaler(logSNR)
if len(a.shape) == 1:
a, b = a.view(-1, *[1]*(len(x0.shape)-1)), b.view(-1, *[1]*(len(x0.shape)-1))
a_prev, b_prev = self.gdf.input_scaler(logSNR_prev)
if len(a_prev.shape) == 1:
a_prev, b_prev = a_prev.view(-1, *[1]*(len(x0.shape)-1)), b_prev.view(-1, *[1]*(len(x0.shape)-1))
sigma_tau = eta * (b_prev**2 / b**2).sqrt() * (1 - a**2 / a_prev**2).sqrt() if eta > 0 else 0
# x = a_prev * x0 + (1 - a_prev**2 - sigma_tau ** 2).sqrt() * epsilon + sigma_tau * torch.randn_like(x0)
x = a_prev * x0 + (b_prev**2 - sigma_tau**2).sqrt() * epsilon + sigma_tau * torch.randn_like(x0)
return x
class DDPMSampler(DDIMSampler):
def step(self, x, x0, epsilon, logSNR, logSNR_prev, eta=1):
return super().step(x, x0, epsilon, logSNR, logSNR_prev, eta)
class LCMSampler(SimpleSampler):
def step(self, x, x0, epsilon, logSNR, logSNR_prev):
a_prev, b_prev = self.gdf.input_scaler(logSNR_prev)
if len(a_prev.shape) == 1:
a_prev, b_prev = a_prev.view(-1, *[1]*(len(x0.shape)-1)), b_prev.view(-1, *[1]*(len(x0.shape)-1))
return x0 * a_prev + torch.randn_like(epsilon) * b_prev
|