File size: 7,866 Bytes
5231633 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
import torch
import numpy as np
class BaseSchedule():
def __init__(self, *args, force_limits=True, discrete_steps=None, shift=1, **kwargs):
self.setup(*args, **kwargs)
self.limits = None
self.discrete_steps = discrete_steps
self.shift = shift
if force_limits:
self.reset_limits()
def reset_limits(self, shift=1, disable=False):
try:
self.limits = None if disable else self(torch.tensor([1.0, 0.0]), shift=shift).tolist() # min, max
return self.limits
except Exception:
print("WARNING: this schedule doesn't support t and will be unbounded")
return None
def setup(self, *args, **kwargs):
raise NotImplementedError("this method needs to be overriden")
def schedule(self, *args, **kwargs):
raise NotImplementedError("this method needs to be overriden")
def __call__(self, t, *args, shift=1, **kwargs):
if isinstance(t, torch.Tensor):
batch_size = None
if self.discrete_steps is not None:
if t.dtype != torch.long:
t = (t * (self.discrete_steps-1)).round().long()
t = t / (self.discrete_steps-1)
t = t.clamp(0, 1)
else:
batch_size = t
t = None
logSNR = self.schedule(t, batch_size, *args, **kwargs)
if shift*self.shift != 1:
logSNR += 2 * np.log(1/(shift*self.shift))
if self.limits is not None:
logSNR = logSNR.clamp(*self.limits)
return logSNR
class CosineSchedule(BaseSchedule):
def setup(self, s=0.008, clamp_range=[0.0001, 0.9999], norm_instead=False):
self.s = torch.tensor([s])
self.clamp_range = clamp_range
self.norm_instead = norm_instead
self.min_var = torch.cos(self.s / (1 + self.s) * torch.pi * 0.5) ** 2
def schedule(self, t, batch_size):
if t is None:
t = (1-torch.rand(batch_size)).add(0.001).clamp(0.001, 1.0)
s, min_var = self.s.to(t.device), self.min_var.to(t.device)
var = torch.cos((s + t)/(1+s) * torch.pi * 0.5).clamp(0, 1) ** 2 / min_var
if self.norm_instead:
var = var * (self.clamp_range[1]-self.clamp_range[0]) + self.clamp_range[0]
else:
var = var.clamp(*self.clamp_range)
logSNR = (var/(1-var)).log()
return logSNR
class CosineSchedule2(BaseSchedule):
def setup(self, logsnr_range=[-15, 15]):
self.t_min = np.arctan(np.exp(-0.5 * logsnr_range[1]))
self.t_max = np.arctan(np.exp(-0.5 * logsnr_range[0]))
def schedule(self, t, batch_size):
if t is None:
t = 1-torch.rand(batch_size)
return -2 * (self.t_min + t*(self.t_max-self.t_min)).tan().log()
class SqrtSchedule(BaseSchedule):
def setup(self, s=1e-4, clamp_range=[0.0001, 0.9999], norm_instead=False):
self.s = s
self.clamp_range = clamp_range
self.norm_instead = norm_instead
def schedule(self, t, batch_size):
if t is None:
t = 1-torch.rand(batch_size)
var = 1 - (t + self.s)**0.5
if self.norm_instead:
var = var * (self.clamp_range[1]-self.clamp_range[0]) + self.clamp_range[0]
else:
var = var.clamp(*self.clamp_range)
logSNR = (var/(1-var)).log()
return logSNR
class RectifiedFlowsSchedule(BaseSchedule):
def setup(self, logsnr_range=[-15, 15]):
self.logsnr_range = logsnr_range
def schedule(self, t, batch_size):
if t is None:
t = 1-torch.rand(batch_size)
logSNR = (((1-t)**2)/(t**2)).log()
logSNR = logSNR.clamp(*self.logsnr_range)
return logSNR
class EDMSampleSchedule(BaseSchedule):
def setup(self, sigma_range=[0.002, 80], p=7):
self.sigma_range = sigma_range
self.p = p
def schedule(self, t, batch_size):
if t is None:
t = 1-torch.rand(batch_size)
smin, smax, p = *self.sigma_range, self.p
sigma = (smax ** (1/p) + (1-t) * (smin ** (1/p) - smax ** (1/p))) ** p
logSNR = (1/sigma**2).log()
return logSNR
class EDMTrainSchedule(BaseSchedule):
def setup(self, mu=-1.2, std=1.2):
self.mu = mu
self.std = std
def schedule(self, t, batch_size):
if t is not None:
raise Exception("EDMTrainSchedule doesn't support passing timesteps: t")
logSNR = -2*(torch.randn(batch_size) * self.std - self.mu)
return logSNR
class LinearSchedule(BaseSchedule):
def setup(self, logsnr_range=[-10, 10]):
self.logsnr_range = logsnr_range
def schedule(self, t, batch_size):
if t is None:
t = 1-torch.rand(batch_size)
logSNR = t * (self.logsnr_range[0]-self.logsnr_range[1]) + self.logsnr_range[1]
return logSNR
# Any schedule that cannot be described easily as a continuous function of t
# It needs to define self.x and self.y in the setup() method
class PiecewiseLinearSchedule(BaseSchedule):
def setup(self):
self.x = None
self.y = None
def piecewise_linear(self, x, xs, ys):
indices = torch.searchsorted(xs[:-1], x) - 1
x_min, x_max = xs[indices], xs[indices+1]
y_min, y_max = ys[indices], ys[indices+1]
var = y_min + (y_max - y_min) * (x - x_min) / (x_max - x_min)
return var
def schedule(self, t, batch_size):
if t is None:
t = 1-torch.rand(batch_size)
var = self.piecewise_linear(t, self.x.to(t.device), self.y.to(t.device))
logSNR = (var/(1-var)).log()
return logSNR
class StableDiffusionSchedule(PiecewiseLinearSchedule):
def setup(self, linear_range=[0.00085, 0.012], total_steps=1000):
linear_range_sqrt = [r**0.5 for r in linear_range]
self.x = torch.linspace(0, 1, total_steps+1)
alphas = 1-(linear_range_sqrt[0]*(1-self.x) + linear_range_sqrt[1]*self.x)**2
self.y = alphas.cumprod(dim=-1)
class AdaptiveTrainSchedule(BaseSchedule):
def setup(self, logsnr_range=[-10, 10], buckets=100, min_probs=0.0):
th = torch.linspace(logsnr_range[0], logsnr_range[1], buckets+1)
self.bucket_ranges = torch.tensor([(th[i], th[i+1]) for i in range(buckets)])
self.bucket_probs = torch.ones(buckets)
self.min_probs = min_probs
def schedule(self, t, batch_size):
if t is not None:
raise Exception("AdaptiveTrainSchedule doesn't support passing timesteps: t")
norm_probs = ((self.bucket_probs+self.min_probs) / (self.bucket_probs+self.min_probs).sum())
buckets = torch.multinomial(norm_probs, batch_size, replacement=True)
ranges = self.bucket_ranges[buckets]
logSNR = torch.rand(batch_size) * (ranges[:, 1]-ranges[:, 0]) + ranges[:, 0]
return logSNR
def update_buckets(self, logSNR, loss, beta=0.99):
range_mtx = self.bucket_ranges.unsqueeze(0).expand(logSNR.size(0), -1, -1).to(logSNR.device)
range_mask = (range_mtx[:, :, 0] <= logSNR[:, None]) * (range_mtx[:, :, 1] > logSNR[:, None]).float()
range_idx = range_mask.argmax(-1).cpu()
self.bucket_probs[range_idx] = self.bucket_probs[range_idx] * beta + loss.detach().cpu() * (1-beta)
class InterpolatedSchedule(BaseSchedule):
def setup(self, scheduler1, scheduler2, shifts=[1.0, 1.0]):
self.scheduler1 = scheduler1
self.scheduler2 = scheduler2
self.shifts = shifts
def schedule(self, t, batch_size):
if t is None:
t = 1-torch.rand(batch_size)
t = t.clamp(1e-7, 1-1e-7) # avoid infinities multiplied by 0 which cause nan
low_logSNR = self.scheduler1(t, shift=self.shifts[0])
high_logSNR = self.scheduler2(t, shift=self.shifts[1])
return low_logSNR * t + high_logSNR * (1-t)
|