File size: 7,283 Bytes
5231633 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import os
import yaml
import torch
from tqdm import tqdm
import sys
sys.path.append(os.path.abspath('./'))
from inference.utils import *
from core.utils import load_or_fail
from train import WurstCoreB
from gdf import VPScaler, CosineTNoiseCond, DDPMSampler, P2LossWeight, AdaptiveLossWeight
from train import WurstCore_t2i as WurstCoreC
import torch.nn.functional as F
from core.utils import load_or_fail
import numpy as np
import random
import math
import argparse
from einops import rearrange
import math
#inrfft_3b_strc_WurstCore
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument( '--height', type=int, default=2560, help='image height')
parser.add_argument('--width', type=int, default=5120, help='image width')
parser.add_argument('--seed', type=int, default=123, help='random seed')
parser.add_argument('--dtype', type=str, default='bf16', help=' if bf16 does not work, change it to float32 ')
parser.add_argument('--config_c', type=str,
default='configs/training/t2i.yaml' ,help='config file for stage c, latent generation')
parser.add_argument('--config_b', type=str,
default='configs/inference/stage_b_1b.yaml' ,help='config file for stage b, latent decoding')
parser.add_argument( '--prompt', type=str,
default='A photo-realistic image of a west highland white terrier in the garden, high quality, detail rich, 8K', help='text prompt')
parser.add_argument( '--num_image', type=int, default=10, help='how many images generated')
parser.add_argument( '--output_dir', type=str, default='figures/output_results/', help='output directory for generated image')
parser.add_argument( '--stage_a_tiled', action='store_true', help='whther or nor to use tiled decoding for stage a to save memory')
parser.add_argument( '--pretrained_path', type=str, default='models/ultrapixel_t2i.safetensors', help='pretrained path of newly added paramter of UltraPixel')
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
print(args)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
torch.manual_seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
dtype = torch.bfloat16 if args.dtype == 'bf16' else torch.float
#gdf = gdf_refine(
# schedule=CosineSchedule(clamp_range=[0.0001, 0.9999]),
# input_scaler=VPScaler(), target=EpsilonTarget(),
# noise_cond=CosineTNoiseCond(),
# loss_weight=AdaptiveLossWeight() if self.config.adaptive_loss_weight is True else P2LossWeight(),
# )
# SETUP STAGE C
config_file = args.config_c
with open(config_file, "r", encoding="utf-8") as file:
loaded_config = yaml.safe_load(file)
core = WurstCoreC(config_dict=loaded_config, device=device, training=False)
# SETUP STAGE B
config_file_b = args.config_b
with open(config_file_b, "r", encoding="utf-8") as file:
config_file_b = yaml.safe_load(file)
core_b = WurstCoreB(config_dict=config_file_b, device=device, training=False)
extras = core.setup_extras_pre()
models = core.setup_models(extras)
models.generator.eval().requires_grad_(False)
print("STAGE C READY")
extras_b = core_b.setup_extras_pre()
models_b = core_b.setup_models(extras_b, skip_clip=True)
models_b = WurstCoreB.Models(
**{**models_b.to_dict(), 'tokenizer': models.tokenizer, 'text_model': models.text_model}
)
models_b.generator.bfloat16().eval().requires_grad_(False)
print("STAGE B READY")
captions = [args.prompt] * args.num_image
height, width = args.height, args.width
save_dir = args.output_dir
if not os.path.exists(save_dir):
os.makedirs(save_dir)
pretrained_path = args.pretrained_path
sdd = torch.load(pretrained_path, map_location='cpu')
collect_sd = {}
for k, v in sdd.items():
collect_sd[k[7:]] = v
models.train_norm.load_state_dict(collect_sd)
models.generator.eval()
models.train_norm.eval()
batch_size=1
height_lr, width_lr = get_target_lr_size(height / width, std_size=32)
stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
stage_c_latent_shape_lr, stage_b_latent_shape_lr = calculate_latent_sizes(height_lr, width_lr, batch_size=batch_size)
# Stage C Parameters
extras.sampling_configs['cfg'] = 4
extras.sampling_configs['shift'] = 1
extras.sampling_configs['timesteps'] = 20
extras.sampling_configs['t_start'] = 1.0
extras.sampling_configs['sampler'] = DDPMSampler(extras.gdf)
# Stage B Parameters
extras_b.sampling_configs['cfg'] = 1.1
extras_b.sampling_configs['shift'] = 1
extras_b.sampling_configs['timesteps'] = 10
extras_b.sampling_configs['t_start'] = 1.0
for cnt, caption in enumerate(captions):
batch = {'captions': [caption] * batch_size}
conditions = core.get_conditions(batch, models, extras, is_eval=True, is_unconditional=False, eval_image_embeds=False)
unconditions = core.get_conditions(batch, models, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False)
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
with torch.no_grad():
models.generator.cuda()
print('STAGE C GENERATION***************************')
with torch.cuda.amp.autocast(dtype=dtype):
sampled_c = generation_c(batch, models, extras, core, stage_c_latent_shape, stage_c_latent_shape_lr, device)
models.generator.cpu()
torch.cuda.empty_cache()
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
conditions_b['effnet'] = sampled_c
unconditions_b['effnet'] = torch.zeros_like(sampled_c)
print('STAGE B + A DECODING***************************')
with torch.cuda.amp.autocast(dtype=dtype):
sampled = decode_b(conditions_b, unconditions_b, models_b, stage_b_latent_shape, extras_b, device, stage_a_tiled=args.stage_a_tiled)
torch.cuda.empty_cache()
imgs = show_images(sampled)
for idx, img in enumerate(imgs):
print(os.path.join(save_dir, args.prompt[:20]+'_' + str(cnt).zfill(5) + '.jpg'), idx)
img.save(os.path.join(save_dir, args.prompt[:20]+'_' + str(cnt).zfill(5) + '.jpg'))
print('finished! Results at ', save_dir )
|