|
""" |
|
Author: Zhuo Su, Wenzhe Liu |
|
Date: Feb 18, 2021 |
|
""" |
|
|
|
import math |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
nets = { |
|
'baseline': { |
|
'layer0': 'cv', |
|
'layer1': 'cv', |
|
'layer2': 'cv', |
|
'layer3': 'cv', |
|
'layer4': 'cv', |
|
'layer5': 'cv', |
|
'layer6': 'cv', |
|
'layer7': 'cv', |
|
'layer8': 'cv', |
|
'layer9': 'cv', |
|
'layer10': 'cv', |
|
'layer11': 'cv', |
|
'layer12': 'cv', |
|
'layer13': 'cv', |
|
'layer14': 'cv', |
|
'layer15': 'cv', |
|
}, |
|
'c-v15': { |
|
'layer0': 'cd', |
|
'layer1': 'cv', |
|
'layer2': 'cv', |
|
'layer3': 'cv', |
|
'layer4': 'cv', |
|
'layer5': 'cv', |
|
'layer6': 'cv', |
|
'layer7': 'cv', |
|
'layer8': 'cv', |
|
'layer9': 'cv', |
|
'layer10': 'cv', |
|
'layer11': 'cv', |
|
'layer12': 'cv', |
|
'layer13': 'cv', |
|
'layer14': 'cv', |
|
'layer15': 'cv', |
|
}, |
|
'a-v15': { |
|
'layer0': 'ad', |
|
'layer1': 'cv', |
|
'layer2': 'cv', |
|
'layer3': 'cv', |
|
'layer4': 'cv', |
|
'layer5': 'cv', |
|
'layer6': 'cv', |
|
'layer7': 'cv', |
|
'layer8': 'cv', |
|
'layer9': 'cv', |
|
'layer10': 'cv', |
|
'layer11': 'cv', |
|
'layer12': 'cv', |
|
'layer13': 'cv', |
|
'layer14': 'cv', |
|
'layer15': 'cv', |
|
}, |
|
'r-v15': { |
|
'layer0': 'rd', |
|
'layer1': 'cv', |
|
'layer2': 'cv', |
|
'layer3': 'cv', |
|
'layer4': 'cv', |
|
'layer5': 'cv', |
|
'layer6': 'cv', |
|
'layer7': 'cv', |
|
'layer8': 'cv', |
|
'layer9': 'cv', |
|
'layer10': 'cv', |
|
'layer11': 'cv', |
|
'layer12': 'cv', |
|
'layer13': 'cv', |
|
'layer14': 'cv', |
|
'layer15': 'cv', |
|
}, |
|
'cvvv4': { |
|
'layer0': 'cd', |
|
'layer1': 'cv', |
|
'layer2': 'cv', |
|
'layer3': 'cv', |
|
'layer4': 'cd', |
|
'layer5': 'cv', |
|
'layer6': 'cv', |
|
'layer7': 'cv', |
|
'layer8': 'cd', |
|
'layer9': 'cv', |
|
'layer10': 'cv', |
|
'layer11': 'cv', |
|
'layer12': 'cd', |
|
'layer13': 'cv', |
|
'layer14': 'cv', |
|
'layer15': 'cv', |
|
}, |
|
'avvv4': { |
|
'layer0': 'ad', |
|
'layer1': 'cv', |
|
'layer2': 'cv', |
|
'layer3': 'cv', |
|
'layer4': 'ad', |
|
'layer5': 'cv', |
|
'layer6': 'cv', |
|
'layer7': 'cv', |
|
'layer8': 'ad', |
|
'layer9': 'cv', |
|
'layer10': 'cv', |
|
'layer11': 'cv', |
|
'layer12': 'ad', |
|
'layer13': 'cv', |
|
'layer14': 'cv', |
|
'layer15': 'cv', |
|
}, |
|
'rvvv4': { |
|
'layer0': 'rd', |
|
'layer1': 'cv', |
|
'layer2': 'cv', |
|
'layer3': 'cv', |
|
'layer4': 'rd', |
|
'layer5': 'cv', |
|
'layer6': 'cv', |
|
'layer7': 'cv', |
|
'layer8': 'rd', |
|
'layer9': 'cv', |
|
'layer10': 'cv', |
|
'layer11': 'cv', |
|
'layer12': 'rd', |
|
'layer13': 'cv', |
|
'layer14': 'cv', |
|
'layer15': 'cv', |
|
}, |
|
'cccv4': { |
|
'layer0': 'cd', |
|
'layer1': 'cd', |
|
'layer2': 'cd', |
|
'layer3': 'cv', |
|
'layer4': 'cd', |
|
'layer5': 'cd', |
|
'layer6': 'cd', |
|
'layer7': 'cv', |
|
'layer8': 'cd', |
|
'layer9': 'cd', |
|
'layer10': 'cd', |
|
'layer11': 'cv', |
|
'layer12': 'cd', |
|
'layer13': 'cd', |
|
'layer14': 'cd', |
|
'layer15': 'cv', |
|
}, |
|
'aaav4': { |
|
'layer0': 'ad', |
|
'layer1': 'ad', |
|
'layer2': 'ad', |
|
'layer3': 'cv', |
|
'layer4': 'ad', |
|
'layer5': 'ad', |
|
'layer6': 'ad', |
|
'layer7': 'cv', |
|
'layer8': 'ad', |
|
'layer9': 'ad', |
|
'layer10': 'ad', |
|
'layer11': 'cv', |
|
'layer12': 'ad', |
|
'layer13': 'ad', |
|
'layer14': 'ad', |
|
'layer15': 'cv', |
|
}, |
|
'rrrv4': { |
|
'layer0': 'rd', |
|
'layer1': 'rd', |
|
'layer2': 'rd', |
|
'layer3': 'cv', |
|
'layer4': 'rd', |
|
'layer5': 'rd', |
|
'layer6': 'rd', |
|
'layer7': 'cv', |
|
'layer8': 'rd', |
|
'layer9': 'rd', |
|
'layer10': 'rd', |
|
'layer11': 'cv', |
|
'layer12': 'rd', |
|
'layer13': 'rd', |
|
'layer14': 'rd', |
|
'layer15': 'cv', |
|
}, |
|
'c16': { |
|
'layer0': 'cd', |
|
'layer1': 'cd', |
|
'layer2': 'cd', |
|
'layer3': 'cd', |
|
'layer4': 'cd', |
|
'layer5': 'cd', |
|
'layer6': 'cd', |
|
'layer7': 'cd', |
|
'layer8': 'cd', |
|
'layer9': 'cd', |
|
'layer10': 'cd', |
|
'layer11': 'cd', |
|
'layer12': 'cd', |
|
'layer13': 'cd', |
|
'layer14': 'cd', |
|
'layer15': 'cd', |
|
}, |
|
'a16': { |
|
'layer0': 'ad', |
|
'layer1': 'ad', |
|
'layer2': 'ad', |
|
'layer3': 'ad', |
|
'layer4': 'ad', |
|
'layer5': 'ad', |
|
'layer6': 'ad', |
|
'layer7': 'ad', |
|
'layer8': 'ad', |
|
'layer9': 'ad', |
|
'layer10': 'ad', |
|
'layer11': 'ad', |
|
'layer12': 'ad', |
|
'layer13': 'ad', |
|
'layer14': 'ad', |
|
'layer15': 'ad', |
|
}, |
|
'r16': { |
|
'layer0': 'rd', |
|
'layer1': 'rd', |
|
'layer2': 'rd', |
|
'layer3': 'rd', |
|
'layer4': 'rd', |
|
'layer5': 'rd', |
|
'layer6': 'rd', |
|
'layer7': 'rd', |
|
'layer8': 'rd', |
|
'layer9': 'rd', |
|
'layer10': 'rd', |
|
'layer11': 'rd', |
|
'layer12': 'rd', |
|
'layer13': 'rd', |
|
'layer14': 'rd', |
|
'layer15': 'rd', |
|
}, |
|
'carv4': { |
|
'layer0': 'cd', |
|
'layer1': 'ad', |
|
'layer2': 'rd', |
|
'layer3': 'cv', |
|
'layer4': 'cd', |
|
'layer5': 'ad', |
|
'layer6': 'rd', |
|
'layer7': 'cv', |
|
'layer8': 'cd', |
|
'layer9': 'ad', |
|
'layer10': 'rd', |
|
'layer11': 'cv', |
|
'layer12': 'cd', |
|
'layer13': 'ad', |
|
'layer14': 'rd', |
|
'layer15': 'cv', |
|
}, |
|
} |
|
|
|
|
|
def createConvFunc(op_type): |
|
assert op_type in ['cv', 'cd', 'ad', 'rd'], 'unknown op type: %s' % str(op_type) |
|
if op_type == 'cv': |
|
return F.conv2d |
|
|
|
if op_type == 'cd': |
|
def func(x, weights, bias=None, stride=1, padding=0, dilation=1, groups=1): |
|
assert dilation in [1, 2], 'dilation for cd_conv should be in 1 or 2' |
|
assert weights.size(2) == 3 and weights.size(3) == 3, 'kernel size for cd_conv should be 3x3' |
|
assert padding == dilation, 'padding for cd_conv set wrong' |
|
|
|
weights_c = weights.sum(dim=[2, 3], keepdim=True) |
|
yc = F.conv2d(x, weights_c, stride=stride, padding=0, groups=groups) |
|
y = F.conv2d(x, weights, bias, stride=stride, padding=padding, dilation=dilation, groups=groups) |
|
return y - yc |
|
|
|
return func |
|
elif op_type == 'ad': |
|
def func(x, weights, bias=None, stride=1, padding=0, dilation=1, groups=1): |
|
assert dilation in [1, 2], 'dilation for ad_conv should be in 1 or 2' |
|
assert weights.size(2) == 3 and weights.size(3) == 3, 'kernel size for ad_conv should be 3x3' |
|
assert padding == dilation, 'padding for ad_conv set wrong' |
|
|
|
shape = weights.shape |
|
weights = weights.view(shape[0], shape[1], -1) |
|
weights_conv = (weights - weights[:, :, [3, 0, 1, 6, 4, 2, 7, 8, 5]]).view(shape) |
|
y = F.conv2d(x, weights_conv, bias, stride=stride, padding=padding, dilation=dilation, groups=groups) |
|
return y |
|
|
|
return func |
|
elif op_type == 'rd': |
|
def func(x, weights, bias=None, stride=1, padding=0, dilation=1, groups=1): |
|
assert dilation in [1, 2], 'dilation for rd_conv should be in 1 or 2' |
|
assert weights.size(2) == 3 and weights.size(3) == 3, 'kernel size for rd_conv should be 3x3' |
|
padding = 2 * dilation |
|
|
|
shape = weights.shape |
|
if weights.is_cuda: |
|
buffer = torch.cuda.FloatTensor(shape[0], shape[1], 5 * 5).fill_(0) |
|
else: |
|
buffer = torch.zeros(shape[0], shape[1], 5 * 5) |
|
weights = weights.view(shape[0], shape[1], -1) |
|
buffer[:, :, [0, 2, 4, 10, 14, 20, 22, 24]] = weights[:, :, 1:] |
|
buffer[:, :, [6, 7, 8, 11, 13, 16, 17, 18]] = -weights[:, :, 1:] |
|
buffer[:, :, 12] = 0 |
|
buffer = buffer.view(shape[0], shape[1], 5, 5) |
|
y = F.conv2d(x, buffer, bias, stride=stride, padding=padding, dilation=dilation, groups=groups) |
|
return y |
|
|
|
return func |
|
else: |
|
print('impossible to be here unless you force that') |
|
return None |
|
|
|
|
|
class Conv2d(nn.Module): |
|
def __init__(self, pdc, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, |
|
bias=False): |
|
super(Conv2d, self).__init__() |
|
if in_channels % groups != 0: |
|
raise ValueError('in_channels must be divisible by groups') |
|
if out_channels % groups != 0: |
|
raise ValueError('out_channels must be divisible by groups') |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.kernel_size = kernel_size |
|
self.stride = stride |
|
self.padding = padding |
|
self.dilation = dilation |
|
self.groups = groups |
|
self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels // groups, kernel_size, kernel_size)) |
|
if bias: |
|
self.bias = nn.Parameter(torch.Tensor(out_channels)) |
|
else: |
|
self.register_parameter('bias', None) |
|
self.reset_parameters() |
|
self.pdc = pdc |
|
|
|
def reset_parameters(self): |
|
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5)) |
|
if self.bias is not None: |
|
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight) |
|
bound = 1 / math.sqrt(fan_in) |
|
nn.init.uniform_(self.bias, -bound, bound) |
|
|
|
def forward(self, input): |
|
|
|
return self.pdc(input, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups) |
|
|
|
|
|
class CSAM(nn.Module): |
|
""" |
|
Compact Spatial Attention Module |
|
""" |
|
|
|
def __init__(self, channels): |
|
super(CSAM, self).__init__() |
|
|
|
mid_channels = 4 |
|
self.relu1 = nn.ReLU() |
|
self.conv1 = nn.Conv2d(channels, mid_channels, kernel_size=1, padding=0) |
|
self.conv2 = nn.Conv2d(mid_channels, 1, kernel_size=3, padding=1, bias=False) |
|
self.sigmoid = nn.Sigmoid() |
|
nn.init.constant_(self.conv1.bias, 0) |
|
|
|
def forward(self, x): |
|
y = self.relu1(x) |
|
y = self.conv1(y) |
|
y = self.conv2(y) |
|
y = self.sigmoid(y) |
|
|
|
return x * y |
|
|
|
|
|
class CDCM(nn.Module): |
|
""" |
|
Compact Dilation Convolution based Module |
|
""" |
|
|
|
def __init__(self, in_channels, out_channels): |
|
super(CDCM, self).__init__() |
|
|
|
self.relu1 = nn.ReLU() |
|
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, padding=0) |
|
self.conv2_1 = nn.Conv2d(out_channels, out_channels, kernel_size=3, dilation=5, padding=5, bias=False) |
|
self.conv2_2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, dilation=7, padding=7, bias=False) |
|
self.conv2_3 = nn.Conv2d(out_channels, out_channels, kernel_size=3, dilation=9, padding=9, bias=False) |
|
self.conv2_4 = nn.Conv2d(out_channels, out_channels, kernel_size=3, dilation=11, padding=11, bias=False) |
|
nn.init.constant_(self.conv1.bias, 0) |
|
|
|
def forward(self, x): |
|
x = self.relu1(x) |
|
x = self.conv1(x) |
|
x1 = self.conv2_1(x) |
|
x2 = self.conv2_2(x) |
|
x3 = self.conv2_3(x) |
|
x4 = self.conv2_4(x) |
|
return x1 + x2 + x3 + x4 |
|
|
|
|
|
class MapReduce(nn.Module): |
|
""" |
|
Reduce feature maps into a single edge map |
|
""" |
|
|
|
def __init__(self, channels): |
|
super(MapReduce, self).__init__() |
|
self.conv = nn.Conv2d(channels, 1, kernel_size=1, padding=0) |
|
nn.init.constant_(self.conv.bias, 0) |
|
|
|
def forward(self, x): |
|
return self.conv(x) |
|
|
|
|
|
class PDCBlock(nn.Module): |
|
def __init__(self, pdc, inplane, ouplane, stride=1): |
|
super(PDCBlock, self).__init__() |
|
self.stride = stride |
|
|
|
self.stride = stride |
|
if self.stride > 1: |
|
self.pool = nn.MaxPool2d(kernel_size=2, stride=2) |
|
self.shortcut = nn.Conv2d(inplane, ouplane, kernel_size=1, padding=0) |
|
self.conv1 = Conv2d(pdc, inplane, inplane, kernel_size=3, padding=1, groups=inplane, bias=False) |
|
self.relu2 = nn.ReLU() |
|
self.conv2 = nn.Conv2d(inplane, ouplane, kernel_size=1, padding=0, bias=False) |
|
|
|
def forward(self, x): |
|
if self.stride > 1: |
|
x = self.pool(x) |
|
y = self.conv1(x) |
|
y = self.relu2(y) |
|
y = self.conv2(y) |
|
if self.stride > 1: |
|
x = self.shortcut(x) |
|
y = y + x |
|
return y |
|
|
|
|
|
class PDCBlock_converted(nn.Module): |
|
""" |
|
CPDC, APDC can be converted to vanilla 3x3 convolution |
|
RPDC can be converted to vanilla 5x5 convolution |
|
""" |
|
|
|
def __init__(self, pdc, inplane, ouplane, stride=1): |
|
super(PDCBlock_converted, self).__init__() |
|
self.stride = stride |
|
|
|
if self.stride > 1: |
|
self.pool = nn.MaxPool2d(kernel_size=2, stride=2) |
|
self.shortcut = nn.Conv2d(inplane, ouplane, kernel_size=1, padding=0) |
|
if pdc == 'rd': |
|
self.conv1 = nn.Conv2d(inplane, inplane, kernel_size=5, padding=2, groups=inplane, bias=False) |
|
else: |
|
self.conv1 = nn.Conv2d(inplane, inplane, kernel_size=3, padding=1, groups=inplane, bias=False) |
|
self.relu2 = nn.ReLU() |
|
self.conv2 = nn.Conv2d(inplane, ouplane, kernel_size=1, padding=0, bias=False) |
|
|
|
def forward(self, x): |
|
if self.stride > 1: |
|
x = self.pool(x) |
|
y = self.conv1(x) |
|
y = self.relu2(y) |
|
y = self.conv2(y) |
|
if self.stride > 1: |
|
x = self.shortcut(x) |
|
y = y + x |
|
return y |
|
|
|
|
|
class PiDiNet(nn.Module): |
|
def __init__(self, inplane, pdcs, dil=None, sa=False, convert=False): |
|
super(PiDiNet, self).__init__() |
|
self.sa = sa |
|
if dil is not None: |
|
assert isinstance(dil, int), 'dil should be an int' |
|
self.dil = dil |
|
|
|
self.fuseplanes = [] |
|
|
|
self.inplane = inplane |
|
if convert: |
|
if pdcs[0] == 'rd': |
|
init_kernel_size = 5 |
|
init_padding = 2 |
|
else: |
|
init_kernel_size = 3 |
|
init_padding = 1 |
|
self.init_block = nn.Conv2d(3, self.inplane, |
|
kernel_size=init_kernel_size, padding=init_padding, bias=False) |
|
block_class = PDCBlock_converted |
|
else: |
|
self.init_block = Conv2d(pdcs[0], 3, self.inplane, kernel_size=3, padding=1) |
|
block_class = PDCBlock |
|
|
|
self.block1_1 = block_class(pdcs[1], self.inplane, self.inplane) |
|
self.block1_2 = block_class(pdcs[2], self.inplane, self.inplane) |
|
self.block1_3 = block_class(pdcs[3], self.inplane, self.inplane) |
|
self.fuseplanes.append(self.inplane) |
|
|
|
inplane = self.inplane |
|
self.inplane = self.inplane * 2 |
|
self.block2_1 = block_class(pdcs[4], inplane, self.inplane, stride=2) |
|
self.block2_2 = block_class(pdcs[5], self.inplane, self.inplane) |
|
self.block2_3 = block_class(pdcs[6], self.inplane, self.inplane) |
|
self.block2_4 = block_class(pdcs[7], self.inplane, self.inplane) |
|
self.fuseplanes.append(self.inplane) |
|
|
|
inplane = self.inplane |
|
self.inplane = self.inplane * 2 |
|
self.block3_1 = block_class(pdcs[8], inplane, self.inplane, stride=2) |
|
self.block3_2 = block_class(pdcs[9], self.inplane, self.inplane) |
|
self.block3_3 = block_class(pdcs[10], self.inplane, self.inplane) |
|
self.block3_4 = block_class(pdcs[11], self.inplane, self.inplane) |
|
self.fuseplanes.append(self.inplane) |
|
|
|
self.block4_1 = block_class(pdcs[12], self.inplane, self.inplane, stride=2) |
|
self.block4_2 = block_class(pdcs[13], self.inplane, self.inplane) |
|
self.block4_3 = block_class(pdcs[14], self.inplane, self.inplane) |
|
self.block4_4 = block_class(pdcs[15], self.inplane, self.inplane) |
|
self.fuseplanes.append(self.inplane) |
|
|
|
self.conv_reduces = nn.ModuleList() |
|
if self.sa and self.dil is not None: |
|
self.attentions = nn.ModuleList() |
|
self.dilations = nn.ModuleList() |
|
for i in range(4): |
|
self.dilations.append(CDCM(self.fuseplanes[i], self.dil)) |
|
self.attentions.append(CSAM(self.dil)) |
|
self.conv_reduces.append(MapReduce(self.dil)) |
|
elif self.sa: |
|
self.attentions = nn.ModuleList() |
|
for i in range(4): |
|
self.attentions.append(CSAM(self.fuseplanes[i])) |
|
self.conv_reduces.append(MapReduce(self.fuseplanes[i])) |
|
elif self.dil is not None: |
|
self.dilations = nn.ModuleList() |
|
for i in range(4): |
|
self.dilations.append(CDCM(self.fuseplanes[i], self.dil)) |
|
self.conv_reduces.append(MapReduce(self.dil)) |
|
else: |
|
for i in range(4): |
|
self.conv_reduces.append(MapReduce(self.fuseplanes[i])) |
|
|
|
self.classifier = nn.Conv2d(4, 1, kernel_size=1) |
|
nn.init.constant_(self.classifier.weight, 0.25) |
|
nn.init.constant_(self.classifier.bias, 0) |
|
|
|
|
|
|
|
def get_weights(self): |
|
conv_weights = [] |
|
bn_weights = [] |
|
relu_weights = [] |
|
for pname, p in self.named_parameters(): |
|
if 'bn' in pname: |
|
bn_weights.append(p) |
|
elif 'relu' in pname: |
|
relu_weights.append(p) |
|
else: |
|
conv_weights.append(p) |
|
|
|
return conv_weights, bn_weights, relu_weights |
|
|
|
def forward(self, x): |
|
H, W = x.size()[2:] |
|
|
|
x = self.init_block(x) |
|
|
|
x1 = self.block1_1(x) |
|
x1 = self.block1_2(x1) |
|
x1 = self.block1_3(x1) |
|
|
|
x2 = self.block2_1(x1) |
|
x2 = self.block2_2(x2) |
|
x2 = self.block2_3(x2) |
|
x2 = self.block2_4(x2) |
|
|
|
x3 = self.block3_1(x2) |
|
x3 = self.block3_2(x3) |
|
x3 = self.block3_3(x3) |
|
x3 = self.block3_4(x3) |
|
|
|
x4 = self.block4_1(x3) |
|
x4 = self.block4_2(x4) |
|
x4 = self.block4_3(x4) |
|
x4 = self.block4_4(x4) |
|
|
|
x_fuses = [] |
|
if self.sa and self.dil is not None: |
|
for i, xi in enumerate([x1, x2, x3, x4]): |
|
x_fuses.append(self.attentions[i](self.dilations[i](xi))) |
|
elif self.sa: |
|
for i, xi in enumerate([x1, x2, x3, x4]): |
|
x_fuses.append(self.attentions[i](xi)) |
|
elif self.dil is not None: |
|
for i, xi in enumerate([x1, x2, x3, x4]): |
|
x_fuses.append(self.dilations[i](xi)) |
|
else: |
|
x_fuses = [x1, x2, x3, x4] |
|
|
|
e1 = self.conv_reduces[0](x_fuses[0]) |
|
e1 = F.interpolate(e1, (H, W), mode="bilinear", align_corners=False) |
|
|
|
e2 = self.conv_reduces[1](x_fuses[1]) |
|
e2 = F.interpolate(e2, (H, W), mode="bilinear", align_corners=False) |
|
|
|
e3 = self.conv_reduces[2](x_fuses[2]) |
|
e3 = F.interpolate(e3, (H, W), mode="bilinear", align_corners=False) |
|
|
|
e4 = self.conv_reduces[3](x_fuses[3]) |
|
e4 = F.interpolate(e4, (H, W), mode="bilinear", align_corners=False) |
|
|
|
outputs = [e1, e2, e3, e4] |
|
|
|
output = self.classifier(torch.cat(outputs, dim=1)) |
|
|
|
|
|
|
|
outputs.append(output) |
|
outputs = [torch.sigmoid(r) for r in outputs] |
|
return outputs |
|
|
|
|
|
def config_model(model): |
|
model_options = list(nets.keys()) |
|
assert model in model_options, \ |
|
'unrecognized model, please choose from %s' % str(model_options) |
|
|
|
|
|
|
|
pdcs = [] |
|
for i in range(16): |
|
layer_name = 'layer%d' % i |
|
op = nets[model][layer_name] |
|
pdcs.append(createConvFunc(op)) |
|
|
|
return pdcs |
|
|
|
|
|
def pidinet(): |
|
pdcs = config_model('carv4') |
|
dil = 24 |
|
return PiDiNet(60, pdcs, dil=dil, sa=True) |
|
|