|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import math |
|
from einops import rearrange |
|
import torch.fft as fft |
|
class Linear(torch.nn.Linear): |
|
def reset_parameters(self): |
|
return None |
|
|
|
class Conv2d(torch.nn.Conv2d): |
|
def reset_parameters(self): |
|
return None |
|
|
|
|
|
|
|
class Attention2D(nn.Module): |
|
def __init__(self, c, nhead, dropout=0.0): |
|
super().__init__() |
|
self.attn = nn.MultiheadAttention(c, nhead, dropout=dropout, bias=True, batch_first=True) |
|
|
|
def forward(self, x, kv, self_attn=False): |
|
orig_shape = x.shape |
|
x = x.view(x.size(0), x.size(1), -1).permute(0, 2, 1) |
|
if self_attn: |
|
|
|
kv = torch.cat([x, kv], dim=1) |
|
|
|
|
|
|
|
x = self.attn(x, kv, kv, need_weights=False)[0] |
|
x = x.permute(0, 2, 1).view(*orig_shape) |
|
return x |
|
|
|
|
|
class LayerNorm2d(nn.LayerNorm): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
def forward(self, x): |
|
return super().forward(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) |
|
|
|
class GlobalResponseNorm(nn.Module): |
|
"from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105" |
|
def __init__(self, dim): |
|
super().__init__() |
|
self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim)) |
|
self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim)) |
|
|
|
def forward(self, x): |
|
Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True) |
|
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6) |
|
return self.gamma * (x * Nx) + self.beta + x |
|
|
|
|
|
class ResBlock(nn.Module): |
|
def __init__(self, c, c_skip=0, kernel_size=3, dropout=0.0): |
|
super().__init__() |
|
self.depthwise = Conv2d(c, c, kernel_size=kernel_size, padding=kernel_size // 2, groups=c) |
|
|
|
self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6) |
|
self.channelwise = nn.Sequential( |
|
Linear(c + c_skip, c * 4), |
|
nn.GELU(), |
|
GlobalResponseNorm(c * 4), |
|
nn.Dropout(dropout), |
|
Linear(c * 4, c) |
|
) |
|
|
|
def forward(self, x, x_skip=None): |
|
x_res = x |
|
x = self.norm(self.depthwise(x)) |
|
if x_skip is not None: |
|
x = torch.cat([x, x_skip], dim=1) |
|
x = self.channelwise(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) |
|
return x + x_res |
|
|
|
|
|
class AttnBlock(nn.Module): |
|
def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0): |
|
super().__init__() |
|
self.self_attn = self_attn |
|
self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6) |
|
self.attention = Attention2D(c, nhead, dropout) |
|
self.kv_mapper = nn.Sequential( |
|
nn.SiLU(), |
|
Linear(c_cond, c) |
|
) |
|
|
|
def forward(self, x, kv): |
|
kv = self.kv_mapper(kv) |
|
res = self.attention(self.norm(x), kv, self_attn=self.self_attn) |
|
|
|
|
|
|
|
x = x + res |
|
|
|
return x |
|
|
|
class FeedForwardBlock(nn.Module): |
|
def __init__(self, c, dropout=0.0): |
|
super().__init__() |
|
self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6) |
|
self.channelwise = nn.Sequential( |
|
Linear(c, c * 4), |
|
nn.GELU(), |
|
GlobalResponseNorm(c * 4), |
|
nn.Dropout(dropout), |
|
Linear(c * 4, c) |
|
) |
|
|
|
def forward(self, x): |
|
x = x + self.channelwise(self.norm(x).permute(0, 2, 3, 1)).permute(0, 3, 1, 2) |
|
return x |
|
|
|
|
|
class TimestepBlock(nn.Module): |
|
def __init__(self, c, c_timestep, conds=['sca']): |
|
super().__init__() |
|
self.mapper = Linear(c_timestep, c * 2) |
|
self.conds = conds |
|
for cname in conds: |
|
setattr(self, f"mapper_{cname}", Linear(c_timestep, c * 2)) |
|
|
|
def forward(self, x, t): |
|
t = t.chunk(len(self.conds) + 1, dim=1) |
|
a, b = self.mapper(t[0])[:, :, None, None].chunk(2, dim=1) |
|
for i, c in enumerate(self.conds): |
|
ac, bc = getattr(self, f"mapper_{c}")(t[i + 1])[:, :, None, None].chunk(2, dim=1) |
|
a, b = a + ac, b + bc |
|
return x * (1 + a) + b |
|
|