ultpixgen / modules /controlnet.py
roubaofeipi's picture
Upload 100 files
5231633 verified
raw
history blame
14.3 kB
import torchvision
import torch
from torch import nn
import numpy as np
import kornia
import cv2
from core.utils import load_or_fail
#from insightface.app.common import Face
from .effnet import EfficientNetEncoder
from .cnet_modules.pidinet import PidiNetDetector
from .cnet_modules.inpainting.saliency_model import MicroResNet
#from .cnet_modules.face_id.arcface import FaceDetector, ArcFaceRecognizer
from .common import LayerNorm2d
class CNetResBlock(nn.Module):
def __init__(self, c):
super().__init__()
self.blocks = nn.Sequential(
LayerNorm2d(c),
nn.GELU(),
nn.Conv2d(c, c, kernel_size=3, padding=1),
LayerNorm2d(c),
nn.GELU(),
nn.Conv2d(c, c, kernel_size=3, padding=1),
)
def forward(self, x):
return x + self.blocks(x)
class ControlNet(nn.Module):
def __init__(self, c_in=3, c_proj=2048, proj_blocks=None, bottleneck_mode=None):
super().__init__()
if bottleneck_mode is None:
bottleneck_mode = 'effnet'
self.proj_blocks = proj_blocks
if bottleneck_mode == 'effnet':
embd_channels = 1280
#self.backbone = torchvision.models.efficientnet_v2_s(weights='DEFAULT').features.eval()
self.backbone = torchvision.models.efficientnet_v2_s().features.eval()
if c_in != 3:
in_weights = self.backbone[0][0].weight.data
self.backbone[0][0] = nn.Conv2d(c_in, 24, kernel_size=3, stride=2, bias=False)
if c_in > 3:
nn.init.constant_(self.backbone[0][0].weight, 0)
self.backbone[0][0].weight.data[:, :3] = in_weights[:, :3].clone()
else:
self.backbone[0][0].weight.data = in_weights[:, :c_in].clone()
elif bottleneck_mode == 'simple':
embd_channels = c_in
self.backbone = nn.Sequential(
nn.Conv2d(embd_channels, embd_channels * 4, kernel_size=3, padding=1),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(embd_channels * 4, embd_channels, kernel_size=3, padding=1),
)
elif bottleneck_mode == 'large':
self.backbone = nn.Sequential(
nn.Conv2d(c_in, 4096 * 4, kernel_size=1),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(4096 * 4, 1024, kernel_size=1),
*[CNetResBlock(1024) for _ in range(8)],
nn.Conv2d(1024, 1280, kernel_size=1),
)
embd_channels = 1280
else:
raise ValueError(f'Unknown bottleneck mode: {bottleneck_mode}')
self.projections = nn.ModuleList()
for _ in range(len(proj_blocks)):
self.projections.append(nn.Sequential(
nn.Conv2d(embd_channels, embd_channels, kernel_size=1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(embd_channels, c_proj, kernel_size=1, bias=False),
))
nn.init.constant_(self.projections[-1][-1].weight, 0) # zero output projection
def forward(self, x):
x = self.backbone(x)
proj_outputs = [None for _ in range(max(self.proj_blocks) + 1)]
for i, idx in enumerate(self.proj_blocks):
proj_outputs[idx] = self.projections[i](x)
return proj_outputs
class ControlNetDeliverer():
def __init__(self, controlnet_projections):
self.controlnet_projections = controlnet_projections
self.restart()
def restart(self):
self.idx = 0
return self
def __call__(self):
if self.idx < len(self.controlnet_projections):
output = self.controlnet_projections[self.idx]
else:
output = None
self.idx += 1
return output
# CONTROLNET FILTERS ----------------------------------------------------
class BaseFilter():
def __init__(self, device):
self.device = device
def num_channels(self):
return 3
def __call__(self, x):
return x
class CannyFilter(BaseFilter):
def __init__(self, device, resize=224):
super().__init__(device)
self.resize = resize
def num_channels(self):
return 1
def __call__(self, x):
orig_size = x.shape[-2:]
if self.resize is not None:
x = nn.functional.interpolate(x, size=(self.resize, self.resize), mode='bilinear')
edges = [cv2.Canny(x[i].mul(255).permute(1, 2, 0).cpu().numpy().astype(np.uint8), 100, 200) for i in range(len(x))]
edges = torch.stack([torch.tensor(e).div(255).unsqueeze(0) for e in edges], dim=0)
if self.resize is not None:
edges = nn.functional.interpolate(edges, size=orig_size, mode='bilinear')
return edges
class QRFilter(BaseFilter):
def __init__(self, device, resize=224, blobify=True, dilation_kernels=[3, 5, 7], blur_kernels=[15]):
super().__init__(device)
self.resize = resize
self.blobify = blobify
self.dilation_kernels = dilation_kernels
self.blur_kernels = blur_kernels
def num_channels(self):
return 1
def __call__(self, x):
x = x.to(self.device)
orig_size = x.shape[-2:]
if self.resize is not None:
x = nn.functional.interpolate(x, size=(self.resize, self.resize), mode='bilinear')
x = kornia.color.rgb_to_hsv(x)[:, -1:]
# blobify
if self.blobify:
d_kernel = np.random.choice(self.dilation_kernels)
d_blur = np.random.choice(self.blur_kernels)
if d_blur > 0:
x = torchvision.transforms.GaussianBlur(d_blur)(x)
if d_kernel > 0:
blob_mask = ((torch.linspace(-0.5, 0.5, d_kernel).pow(2)[None] + torch.linspace(-0.5, 0.5,
d_kernel).pow(2)[:,
None]) < 0.3).float().to(self.device)
x = kornia.morphology.dilation(x, blob_mask)
x = kornia.morphology.erosion(x, blob_mask)
# mask
vmax, vmin = x.amax(dim=[2, 3], keepdim=True)[0], x.amin(dim=[2, 3], keepdim=True)[0]
th = (vmax - vmin) * 0.33
high_brightness, low_brightness = (x > (vmax - th)).float(), (x < (vmin + th)).float()
mask = (torch.ones_like(x) - low_brightness + high_brightness) * 0.5
if self.resize is not None:
mask = nn.functional.interpolate(mask, size=orig_size, mode='bilinear')
return mask.cpu()
class PidiFilter(BaseFilter):
def __init__(self, device, resize=224, dilation_kernels=[0, 3, 5, 7, 9], binarize=True):
super().__init__(device)
self.resize = resize
self.model = PidiNetDetector(device)
self.dilation_kernels = dilation_kernels
self.binarize = binarize
def num_channels(self):
return 1
def __call__(self, x):
x = x.to(self.device)
orig_size = x.shape[-2:]
if self.resize is not None:
x = nn.functional.interpolate(x, size=(self.resize, self.resize), mode='bilinear')
x = self.model(x)
d_kernel = np.random.choice(self.dilation_kernels)
if d_kernel > 0:
blob_mask = ((torch.linspace(-0.5, 0.5, d_kernel).pow(2)[None] + torch.linspace(-0.5, 0.5, d_kernel).pow(2)[
:, None]) < 0.3).float().to(self.device)
x = kornia.morphology.dilation(x, blob_mask)
if self.binarize:
th = np.random.uniform(0.05, 0.7)
x = (x > th).float()
if self.resize is not None:
x = nn.functional.interpolate(x, size=orig_size, mode='bilinear')
return x.cpu()
class SRFilter(BaseFilter):
def __init__(self, device, scale_factor=1 / 4):
super().__init__(device)
self.scale_factor = scale_factor
def num_channels(self):
return 3
def __call__(self, x):
x = torch.nn.functional.interpolate(x.clone(), scale_factor=self.scale_factor, mode="nearest")
return torch.nn.functional.interpolate(x, scale_factor=1 / self.scale_factor, mode="nearest")
class SREffnetFilter(BaseFilter):
def __init__(self, device, scale_factor=1/2):
super().__init__(device)
self.scale_factor = scale_factor
self.effnet_preprocess = torchvision.transforms.Compose([
torchvision.transforms.Normalize(
mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)
)
])
self.effnet = EfficientNetEncoder().to(self.device)
effnet_checkpoint = load_or_fail("models/effnet_encoder.safetensors")
self.effnet.load_state_dict(effnet_checkpoint)
self.effnet.eval().requires_grad_(False)
def num_channels(self):
return 16
def __call__(self, x):
x = torch.nn.functional.interpolate(x.clone(), scale_factor=self.scale_factor, mode="nearest")
with torch.no_grad():
effnet_embedding = self.effnet(self.effnet_preprocess(x.to(self.device))).cpu()
effnet_embedding = torch.nn.functional.interpolate(effnet_embedding, scale_factor=1/self.scale_factor, mode="nearest")
upscaled_image = torch.nn.functional.interpolate(x, scale_factor=1/self.scale_factor, mode="nearest")
return effnet_embedding, upscaled_image
class InpaintFilter(BaseFilter):
def __init__(self, device, thresold=[0.04, 0.4], p_outpaint=0.4):
super().__init__(device)
self.saliency_model = MicroResNet().eval().requires_grad_(False).to(device)
self.saliency_model.load_state_dict(load_or_fail("modules/cnet_modules/inpainting/saliency_model.pt"))
self.thresold = thresold
self.p_outpaint = p_outpaint
def num_channels(self):
return 4
def __call__(self, x, mask=None, threshold=None, outpaint=None):
x = x.to(self.device)
resized_x = torchvision.transforms.functional.resize(x, 240, antialias=True)
if threshold is None:
threshold = np.random.uniform(self.thresold[0], self.thresold[1])
if mask is None:
saliency_map = self.saliency_model(resized_x) > threshold
if outpaint is None:
if np.random.rand() < self.p_outpaint:
saliency_map = ~saliency_map
else:
if outpaint:
saliency_map = ~saliency_map
interpolated_saliency_map = torch.nn.functional.interpolate(saliency_map.float(), size=x.shape[2:], mode="nearest")
saliency_map = torchvision.transforms.functional.gaussian_blur(interpolated_saliency_map, 141) > 0.5
inpainted_images = torch.where(saliency_map, torch.ones_like(x), x)
mask = torch.nn.functional.interpolate(saliency_map.float(), size=inpainted_images.shape[2:], mode="nearest")
else:
mask = mask.to(self.device)
inpainted_images = torch.where(mask, torch.ones_like(x), x)
c_inpaint = torch.cat([inpainted_images, mask], dim=1)
return c_inpaint.cpu()
# IDENTITY
'''
class IdentityFilter(BaseFilter):
def __init__(self, device, max_faces=4, p_drop=0.05, p_full=0.3):
detector_path = 'modules/cnet_modules/face_id/models/buffalo_l/det_10g.onnx'
recognizer_path = 'modules/cnet_modules/face_id/models/buffalo_l/w600k_r50.onnx'
super().__init__(device)
self.max_faces = max_faces
self.p_drop = p_drop
self.p_full = p_full
self.detector = FaceDetector(detector_path, device=device)
self.recognizer = ArcFaceRecognizer(recognizer_path, device=device)
self.id_colors = torch.tensor([
[1.0, 0.0, 0.0], # RED
[0.0, 1.0, 0.0], # GREEN
[0.0, 0.0, 1.0], # BLUE
[1.0, 0.0, 1.0], # PURPLE
[0.0, 1.0, 1.0], # CYAN
[1.0, 1.0, 0.0], # YELLOW
[0.5, 0.0, 0.0], # DARK RED
[0.0, 0.5, 0.0], # DARK GREEN
[0.0, 0.0, 0.5], # DARK BLUE
[0.5, 0.0, 0.5], # DARK PURPLE
[0.0, 0.5, 0.5], # DARK CYAN
[0.5, 0.5, 0.0], # DARK YELLOW
])
def num_channels(self):
return 512
def get_faces(self, image):
npimg = image.permute(1, 2, 0).mul(255).to(device="cpu", dtype=torch.uint8).cpu().numpy()
bgr = cv2.cvtColor(npimg, cv2.COLOR_RGB2BGR)
bboxes, kpss = self.detector.detect(bgr, max_num=self.max_faces)
N = len(bboxes)
ids = torch.zeros((N, 512), dtype=torch.float32)
for i in range(N):
face = Face(bbox=bboxes[i, :4], kps=kpss[i], det_score=bboxes[i, 4])
ids[i, :] = self.recognizer.get(bgr, face)
tbboxes = torch.tensor(bboxes[:, :4], dtype=torch.int)
ids = ids / torch.linalg.norm(ids, dim=1, keepdim=True)
return tbboxes, ids # returns bounding boxes (N x 4) and ID vectors (N x 512)
def __call__(self, x):
visual_aid = x.clone().cpu()
face_mtx = torch.zeros(x.size(0), 512, x.size(-2) // 32, x.size(-1) // 32)
for i in range(x.size(0)):
bounding_boxes, ids = self.get_faces(x[i])
for j in range(bounding_boxes.size(0)):
if np.random.rand() > self.p_drop:
sx, sy, ex, ey = (bounding_boxes[j] / 32).clamp(min=0).round().int().tolist()
ex, ey = max(ex, sx + 1), max(ey, sy + 1)
if bounding_boxes.size(0) == 1 and np.random.rand() < self.p_full:
sx, sy, ex, ey = 0, 0, x.size(-1) // 32, x.size(-2) // 32
face_mtx[i, :, sy:ey, sx:ex] = ids[j:j + 1, :, None, None]
visual_aid[i, :, int(sy * 32):int(ey * 32), int(sx * 32):int(ex * 32)] += self.id_colors[j % 13, :,
None, None]
visual_aid[i, :, int(sy * 32):int(ey * 32), int(sx * 32):int(ex * 32)] *= 0.5
return face_mtx.to(x.device), visual_aid.to(x.device)
'''