import torchvision | |
from torch import nn | |
# EfficientNet | |
class EfficientNetEncoder(nn.Module): | |
def __init__(self, c_latent=16): | |
super().__init__() | |
self.backbone = torchvision.models.efficientnet_v2_s().features.eval() | |
self.mapper = nn.Sequential( | |
nn.Conv2d(1280, c_latent, kernel_size=1, bias=False), | |
nn.BatchNorm2d(c_latent, affine=False), # then normalize them to have mean 0 and std 1 | |
) | |
def forward(self, x): | |
return self.mapper(self.backbone(x)) | |