|
import torch |
|
import torchvision |
|
from torch import nn, optim |
|
from transformers import AutoTokenizer, CLIPTextModelWithProjection |
|
from warmup_scheduler import GradualWarmupScheduler |
|
import numpy as np |
|
|
|
import sys |
|
import os |
|
from dataclasses import dataclass |
|
|
|
from gdf import GDF, EpsilonTarget, CosineSchedule |
|
from gdf import VPScaler, CosineTNoiseCond, DDPMSampler, P2LossWeight, AdaptiveLossWeight |
|
from torchtools.transforms import SmartCrop |
|
|
|
from modules.effnet import EfficientNetEncoder |
|
from modules.stage_a import StageA |
|
|
|
from modules.stage_b import StageB |
|
from modules.stage_b import ResBlock, AttnBlock, TimestepBlock, FeedForwardBlock |
|
|
|
from train.base import DataCore, TrainingCore |
|
|
|
from core import WarpCore |
|
from core.utils import EXPECTED, EXPECTED_TRAIN, load_or_fail |
|
|
|
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP |
|
from torch.distributed.fsdp.wrap import ModuleWrapPolicy |
|
from accelerate import init_empty_weights |
|
from accelerate.utils import set_module_tensor_to_device |
|
from contextlib import contextmanager |
|
|
|
class WurstCore(TrainingCore, DataCore, WarpCore): |
|
@dataclass(frozen=True) |
|
class Config(TrainingCore.Config, DataCore.Config, WarpCore.Config): |
|
|
|
lr: float = EXPECTED_TRAIN |
|
warmup_updates: int = EXPECTED_TRAIN |
|
shift: float = EXPECTED_TRAIN |
|
dtype: str = None |
|
|
|
|
|
model_version: str = EXPECTED |
|
clip_text_model_name: str = 'laion/CLIP-ViT-bigG-14-laion2B-39B-b160k' |
|
|
|
|
|
stage_a_checkpoint_path: str = EXPECTED |
|
effnet_checkpoint_path: str = EXPECTED |
|
generator_checkpoint_path: str = None |
|
|
|
|
|
adaptive_loss_weight: str = None |
|
|
|
@dataclass(frozen=True) |
|
class Models(TrainingCore.Models, DataCore.Models, WarpCore.Models): |
|
effnet: nn.Module = EXPECTED |
|
stage_a: nn.Module = EXPECTED |
|
|
|
@dataclass(frozen=True) |
|
class Schedulers(WarpCore.Schedulers): |
|
generator: any = None |
|
|
|
@dataclass(frozen=True) |
|
class Extras(TrainingCore.Extras, DataCore.Extras, WarpCore.Extras): |
|
gdf: GDF = EXPECTED |
|
sampling_configs: dict = EXPECTED |
|
effnet_preprocess: torchvision.transforms.Compose = EXPECTED |
|
|
|
info: TrainingCore.Info |
|
config: Config |
|
|
|
def setup_extras_pre(self) -> Extras: |
|
gdf = GDF( |
|
schedule=CosineSchedule(clamp_range=[0.0001, 0.9999]), |
|
input_scaler=VPScaler(), target=EpsilonTarget(), |
|
noise_cond=CosineTNoiseCond(), |
|
loss_weight=AdaptiveLossWeight() if self.config.adaptive_loss_weight is True else P2LossWeight(), |
|
) |
|
sampling_configs = {"cfg": 1.5, "sampler": DDPMSampler(gdf), "shift": 1, "timesteps": 10} |
|
|
|
if self.info.adaptive_loss is not None: |
|
gdf.loss_weight.bucket_ranges = torch.tensor(self.info.adaptive_loss['bucket_ranges']) |
|
gdf.loss_weight.bucket_losses = torch.tensor(self.info.adaptive_loss['bucket_losses']) |
|
|
|
effnet_preprocess = torchvision.transforms.Compose([ |
|
torchvision.transforms.Normalize( |
|
mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225) |
|
) |
|
]) |
|
|
|
transforms = torchvision.transforms.Compose([ |
|
torchvision.transforms.ToTensor(), |
|
torchvision.transforms.Resize(self.config.image_size, |
|
interpolation=torchvision.transforms.InterpolationMode.BILINEAR, |
|
antialias=True), |
|
SmartCrop(self.config.image_size, randomize_p=0.3, randomize_q=0.2) if self.config.training else torchvision.transforms.CenterCrop(self.config.image_size) |
|
]) |
|
|
|
return self.Extras( |
|
gdf=gdf, |
|
sampling_configs=sampling_configs, |
|
transforms=transforms, |
|
effnet_preprocess=effnet_preprocess, |
|
clip_preprocess=None |
|
) |
|
|
|
def get_conditions(self, batch: dict, models: Models, extras: Extras, is_eval=False, is_unconditional=False, eval_image_embeds=False, return_fields=None): |
|
images = batch.get('images', None) |
|
|
|
if images is not None: |
|
images = images.to(self.device) |
|
if is_eval and not is_unconditional: |
|
effnet_embeddings = models.effnet(extras.effnet_preprocess(images)) |
|
else: |
|
if is_eval: |
|
effnet_factor = 1 |
|
else: |
|
effnet_factor = np.random.uniform(0.5, 1) |
|
effnet_height, effnet_width = int(((images.size(-2)*effnet_factor)//32)*32), int(((images.size(-1)*effnet_factor)//32)*32) |
|
|
|
effnet_embeddings = torch.zeros(images.size(0), 16, effnet_height//32, effnet_width//32, device=self.device) |
|
if not is_eval: |
|
effnet_images = torchvision.transforms.functional.resize(images, (effnet_height, effnet_width), interpolation=torchvision.transforms.InterpolationMode.NEAREST) |
|
rand_idx = np.random.rand(len(images)) <= 0.9 |
|
if any(rand_idx): |
|
effnet_embeddings[rand_idx] = models.effnet(extras.effnet_preprocess(effnet_images[rand_idx])) |
|
else: |
|
effnet_embeddings = None |
|
|
|
conditions = super().get_conditions( |
|
batch, models, extras, is_eval, is_unconditional, |
|
eval_image_embeds, return_fields=return_fields or ['clip_text_pooled'] |
|
) |
|
|
|
return {'effnet': effnet_embeddings, 'clip': conditions['clip_text_pooled']} |
|
|
|
def setup_models(self, extras: Extras, skip_clip: bool = False) -> Models: |
|
dtype = getattr(torch, self.config.dtype) if self.config.dtype else torch.float32 |
|
|
|
|
|
effnet = EfficientNetEncoder().to(self.device) |
|
effnet_checkpoint = load_or_fail(self.config.effnet_checkpoint_path) |
|
|
|
effnet.load_state_dict(effnet_checkpoint if 'state_dict' not in effnet_checkpoint else effnet_checkpoint['state_dict']) |
|
effnet.eval().requires_grad_(False) |
|
del effnet_checkpoint |
|
|
|
|
|
stage_a = StageA().to(self.device) |
|
stage_a_checkpoint = load_or_fail(self.config.stage_a_checkpoint_path) |
|
stage_a.load_state_dict(stage_a_checkpoint if 'state_dict' not in stage_a_checkpoint else stage_a_checkpoint['state_dict']) |
|
stage_a.eval().requires_grad_(False) |
|
del stage_a_checkpoint |
|
|
|
@contextmanager |
|
def dummy_context(): |
|
yield None |
|
|
|
loading_context = dummy_context if self.config.training else init_empty_weights |
|
|
|
|
|
with loading_context(): |
|
generator_ema = None |
|
if self.config.model_version == '3B': |
|
generator = StageB(c_hidden=[320, 640, 1280, 1280], nhead=[-1, -1, 20, 20], blocks=[[2, 6, 28, 6], [6, 28, 6, 2]], block_repeat=[[1, 1, 1, 1], [3, 3, 2, 2]]) |
|
if self.config.ema_start_iters is not None: |
|
generator_ema = StageB(c_hidden=[320, 640, 1280, 1280], nhead=[-1, -1, 20, 20], blocks=[[2, 6, 28, 6], [6, 28, 6, 2]], block_repeat=[[1, 1, 1, 1], [3, 3, 2, 2]]) |
|
elif self.config.model_version == '700M': |
|
generator = StageB(c_hidden=[320, 576, 1152, 1152], nhead=[-1, 9, 18, 18], blocks=[[2, 4, 14, 4], [4, 14, 4, 2]], block_repeat=[[1, 1, 1, 1], [2, 2, 2, 2]]) |
|
if self.config.ema_start_iters is not None: |
|
generator_ema = StageB(c_hidden=[320, 576, 1152, 1152], nhead=[-1, 9, 18, 18], blocks=[[2, 4, 14, 4], [4, 14, 4, 2]], block_repeat=[[1, 1, 1, 1], [2, 2, 2, 2]]) |
|
else: |
|
raise ValueError(f"Unknown model version {self.config.model_version}") |
|
|
|
if self.config.generator_checkpoint_path is not None: |
|
if loading_context is dummy_context: |
|
generator.load_state_dict(load_or_fail(self.config.generator_checkpoint_path)) |
|
else: |
|
for param_name, param in load_or_fail(self.config.generator_checkpoint_path).items(): |
|
set_module_tensor_to_device(generator, param_name, "cpu", value=param) |
|
generator = generator.to(dtype).to(self.device) |
|
generator = self.load_model(generator, 'generator') |
|
|
|
if generator_ema is not None: |
|
if loading_context is dummy_context: |
|
generator_ema.load_state_dict(generator.state_dict()) |
|
else: |
|
for param_name, param in generator.state_dict().items(): |
|
set_module_tensor_to_device(generator_ema, param_name, "cpu", value=param) |
|
generator_ema = self.load_model(generator_ema, 'generator_ema') |
|
generator_ema.to(dtype).to(self.device).eval().requires_grad_(False) |
|
|
|
if self.config.use_fsdp: |
|
fsdp_auto_wrap_policy = ModuleWrapPolicy([ResBlock, AttnBlock, TimestepBlock, FeedForwardBlock]) |
|
generator = FSDP(generator, **self.fsdp_defaults, auto_wrap_policy=fsdp_auto_wrap_policy, device_id=self.device) |
|
if generator_ema is not None: |
|
generator_ema = FSDP(generator_ema, **self.fsdp_defaults, auto_wrap_policy=fsdp_auto_wrap_policy, device_id=self.device) |
|
|
|
if skip_clip: |
|
tokenizer = None |
|
text_model = None |
|
else: |
|
tokenizer = AutoTokenizer.from_pretrained(self.config.clip_text_model_name) |
|
text_model = CLIPTextModelWithProjection.from_pretrained(self.config.clip_text_model_name).requires_grad_(False).to(dtype).to(self.device) |
|
|
|
return self.Models( |
|
effnet=effnet, stage_a=stage_a, |
|
generator=generator, generator_ema=generator_ema, |
|
tokenizer=tokenizer, text_model=text_model |
|
) |
|
|
|
def setup_optimizers(self, extras: Extras, models: Models) -> TrainingCore.Optimizers: |
|
optimizer = optim.AdamW(models.generator.parameters(), lr=self.config.lr) |
|
optimizer = self.load_optimizer(optimizer, 'generator_optim', |
|
fsdp_model=models.generator if self.config.use_fsdp else None) |
|
return self.Optimizers(generator=optimizer) |
|
|
|
def setup_schedulers(self, extras: Extras, models: Models, |
|
optimizers: TrainingCore.Optimizers) -> Schedulers: |
|
scheduler = GradualWarmupScheduler(optimizers.generator, multiplier=1, total_epoch=self.config.warmup_updates) |
|
scheduler.last_epoch = self.info.total_steps |
|
return self.Schedulers(generator=scheduler) |
|
|
|
def _pyramid_noise(self, epsilon, size_range=None, levels=10, scale_mode='nearest'): |
|
epsilon = epsilon.clone() |
|
multipliers = [1] |
|
for i in range(1, levels): |
|
m = 0.75 ** i |
|
h, w = epsilon.size(-2) // (2 ** i), epsilon.size(-2) // (2 ** i) |
|
if size_range is None or (size_range[0] <= h <= size_range[1] or size_range[0] <= w <= size_range[1]): |
|
offset = torch.randn(epsilon.size(0), epsilon.size(1), h, w, device=self.device) |
|
epsilon = epsilon + torch.nn.functional.interpolate(offset, size=epsilon.shape[-2:], |
|
mode=scale_mode) * m |
|
multipliers.append(m) |
|
if h <= 1 or w <= 1: |
|
break |
|
epsilon = epsilon / sum([m ** 2 for m in multipliers]) ** 0.5 |
|
|
|
return epsilon |
|
|
|
def forward_pass(self, data: WarpCore.Data, extras: Extras, models: Models): |
|
batch = next(data.iterator) |
|
|
|
with torch.no_grad(): |
|
conditions = self.get_conditions(batch, models, extras) |
|
latents = self.encode_latents(batch, models, extras) |
|
epsilon = torch.randn_like(latents) |
|
epsilon = self._pyramid_noise(epsilon, size_range=[1, 16]) |
|
noised, noise, target, logSNR, noise_cond, loss_weight = extras.gdf.diffuse(latents, shift=1, loss_shift=1, |
|
epsilon=epsilon) |
|
|
|
with torch.cuda.amp.autocast(dtype=torch.bfloat16): |
|
pred = models.generator(noised, noise_cond, **conditions) |
|
loss = nn.functional.mse_loss(pred, target, reduction='none').mean(dim=[1, 2, 3]) |
|
loss_adjusted = (loss * loss_weight).mean() / self.config.grad_accum_steps |
|
|
|
if isinstance(extras.gdf.loss_weight, AdaptiveLossWeight): |
|
extras.gdf.loss_weight.update_buckets(logSNR, loss) |
|
|
|
return loss, loss_adjusted |
|
|
|
def backward_pass(self, update, loss, loss_adjusted, models: Models, optimizers: TrainingCore.Optimizers, |
|
schedulers: Schedulers): |
|
if update: |
|
loss_adjusted.backward() |
|
grad_norm = nn.utils.clip_grad_norm_(models.generator.parameters(), 1.0) |
|
optimizers_dict = optimizers.to_dict() |
|
for k in optimizers_dict: |
|
if k != 'training': |
|
optimizers_dict[k].step() |
|
schedulers_dict = schedulers.to_dict() |
|
for k in schedulers_dict: |
|
if k != 'training': |
|
schedulers_dict[k].step() |
|
for k in optimizers_dict: |
|
if k != 'training': |
|
optimizers_dict[k].zero_grad(set_to_none=True) |
|
self.info.total_steps += 1 |
|
else: |
|
loss_adjusted.backward() |
|
grad_norm = torch.tensor(0.0).to(self.device) |
|
|
|
return grad_norm |
|
|
|
def models_to_save(self): |
|
return ['generator', 'generator_ema'] |
|
|
|
def encode_latents(self, batch: dict, models: Models, extras: Extras) -> torch.Tensor: |
|
images = batch['images'].to(self.device) |
|
return models.stage_a.encode(images)[0] |
|
|
|
def decode_latents(self, latents: torch.Tensor, batch: dict, models: Models, extras: Extras) -> torch.Tensor: |
|
return models.stage_a.decode(latents.float()).clamp(0, 1) |
|
|
|
|
|
if __name__ == '__main__': |
|
print("Launching Script") |
|
warpcore = WurstCore( |
|
config_file_path=sys.argv[1] if len(sys.argv) > 1 else None, |
|
device=torch.device(int(os.environ.get("SLURM_LOCALID"))) |
|
) |
|
|
|
|
|
|
|
warpcore() |
|
|