|
import torch
|
|
import torchvision
|
|
import numpy as np
|
|
from torchtools.transforms import SmartCrop
|
|
import math
|
|
|
|
class Bucketeer():
|
|
def __init__(self, dataloader, density=256*256, factor=8, ratios=[1/1, 1/2, 3/4, 3/5, 4/5, 6/9, 9/16], reverse_list=True, randomize_p=0.3, randomize_q=0.2, crop_mode='random', p_random_ratio=0.0, interpolate_nearest=False):
|
|
assert crop_mode in ['center', 'random', 'smart']
|
|
self.crop_mode = crop_mode
|
|
self.ratios = ratios
|
|
if reverse_list:
|
|
for r in list(ratios):
|
|
if 1/r not in self.ratios:
|
|
self.ratios.append(1/r)
|
|
self.sizes = {}
|
|
for dd in density:
|
|
self.sizes[dd]= [(int(((dd/r)**0.5//factor)*factor), int(((dd*r)**0.5//factor)*factor)) for r in ratios]
|
|
print('in line 17 buckteer', self.sizes)
|
|
self.batch_size = dataloader.batch_size
|
|
self.iterator = iter(dataloader)
|
|
all_sizes = []
|
|
for k, vs in self.sizes.items():
|
|
all_sizes += vs
|
|
self.buckets = {s: [] for s in all_sizes}
|
|
self.smartcrop = SmartCrop(int(density**0.5), randomize_p, randomize_q) if self.crop_mode=='smart' else None
|
|
self.p_random_ratio = p_random_ratio
|
|
self.interpolate_nearest = interpolate_nearest
|
|
|
|
def get_available_batch(self):
|
|
for b in self.buckets:
|
|
if len(self.buckets[b]) >= self.batch_size:
|
|
batch = self.buckets[b][:self.batch_size]
|
|
self.buckets[b] = self.buckets[b][self.batch_size:]
|
|
return batch
|
|
return None
|
|
|
|
def get_closest_size(self, x):
|
|
w, h = x.size(-1), x.size(-2)
|
|
|
|
|
|
|
|
|
|
|
|
best_size_idx = np.argmin([abs(w/h-r) for r in self.ratios])
|
|
find_dict = {dd : abs(w*h - self.sizes[dd][best_size_idx][0]*self.sizes[dd][best_size_idx][1]) for dd, vv in self.sizes.items()}
|
|
min_ = find_dict[list(find_dict.keys())[0]]
|
|
find_size = self.sizes[list(find_dict.keys())[0]][best_size_idx]
|
|
for dd, val in find_dict.items():
|
|
if val < min_:
|
|
min_ = val
|
|
find_size = self.sizes[dd][best_size_idx]
|
|
|
|
return find_size
|
|
|
|
def get_resize_size(self, orig_size, tgt_size):
|
|
if (tgt_size[1]/tgt_size[0] - 1) * (orig_size[1]/orig_size[0] - 1) >= 0:
|
|
alt_min = int(math.ceil(max(tgt_size)*min(orig_size)/max(orig_size)))
|
|
resize_size = max(alt_min, min(tgt_size))
|
|
else:
|
|
alt_max = int(math.ceil(min(tgt_size)*max(orig_size)/min(orig_size)))
|
|
resize_size = max(alt_max, max(tgt_size))
|
|
|
|
return resize_size
|
|
|
|
def __next__(self):
|
|
batch = self.get_available_batch()
|
|
while batch is None:
|
|
elements = next(self.iterator)
|
|
for dct in elements:
|
|
img = dct['images']
|
|
size = self.get_closest_size(img)
|
|
resize_size = self.get_resize_size(img.shape[-2:], size)
|
|
|
|
if self.interpolate_nearest:
|
|
img = torchvision.transforms.functional.resize(img, resize_size, interpolation=torchvision.transforms.InterpolationMode.NEAREST)
|
|
else:
|
|
img = torchvision.transforms.functional.resize(img, resize_size, interpolation=torchvision.transforms.InterpolationMode.BILINEAR, antialias=True)
|
|
if self.crop_mode == 'center':
|
|
img = torchvision.transforms.functional.center_crop(img, size)
|
|
elif self.crop_mode == 'random':
|
|
img = torchvision.transforms.RandomCrop(size)(img)
|
|
elif self.crop_mode == 'smart':
|
|
self.smartcrop.output_size = size
|
|
img = self.smartcrop(img)
|
|
print('in line 86 bucketeer', type(img), img.shape, torch.max(img), torch.min(img))
|
|
self.buckets[size].append({**{'images': img}, **{k:dct[k] for k in dct if k != 'images'}})
|
|
batch = self.get_available_batch()
|
|
|
|
out = {k:[batch[i][k] for i in range(len(batch))] for k in batch[0]}
|
|
return {k: torch.stack(o, dim=0) if isinstance(o[0], torch.Tensor) else o for k, o in out.items()}
|
|
|