|
import torch |
|
import numpy as np |
|
|
|
class BaseNoiseCond(): |
|
def __init__(self, *args, shift=1, clamp_range=None, **kwargs): |
|
clamp_range = [-1e9, 1e9] if clamp_range is None else clamp_range |
|
self.shift = shift |
|
self.clamp_range = clamp_range |
|
self.setup(*args, **kwargs) |
|
|
|
def setup(self, *args, **kwargs): |
|
pass |
|
|
|
def cond(self, logSNR): |
|
raise NotImplementedError("this method needs to be overriden") |
|
|
|
def __call__(self, logSNR): |
|
if self.shift != 1: |
|
logSNR = logSNR.clone() + 2 * np.log(self.shift) |
|
return self.cond(logSNR).clamp(*self.clamp_range) |
|
|
|
class CosineTNoiseCond(BaseNoiseCond): |
|
def setup(self, s=0.008, clamp_range=[0, 1]): |
|
self.s = torch.tensor([s]) |
|
self.clamp_range = clamp_range |
|
self.min_var = torch.cos(self.s / (1 + self.s) * torch.pi * 0.5) ** 2 |
|
|
|
def cond(self, logSNR): |
|
var = logSNR.sigmoid() |
|
var = var.clamp(*self.clamp_range) |
|
s, min_var = self.s.to(var.device), self.min_var.to(var.device) |
|
t = (((var * min_var) ** 0.5).acos() / (torch.pi * 0.5)) * (1 + s) - s |
|
return t |
|
|
|
class EDMNoiseCond(BaseNoiseCond): |
|
def cond(self, logSNR): |
|
return -logSNR/8 |
|
|
|
class SigmoidNoiseCond(BaseNoiseCond): |
|
def cond(self, logSNR): |
|
return (-logSNR).sigmoid() |
|
|
|
class LogSNRNoiseCond(BaseNoiseCond): |
|
def cond(self, logSNR): |
|
return logSNR |
|
|
|
class EDMSigmaNoiseCond(BaseNoiseCond): |
|
def setup(self, sigma_data=1): |
|
self.sigma_data = sigma_data |
|
|
|
def cond(self, logSNR): |
|
return torch.exp(-logSNR / 2) * self.sigma_data |
|
|
|
class RectifiedFlowsNoiseCond(BaseNoiseCond): |
|
def cond(self, logSNR): |
|
_a = logSNR.exp() - 1 |
|
_a[_a == 0] = 1e-3 |
|
a = 1 + (2-(2**2 + 4*_a)**0.5) / (2*_a) |
|
return a |
|
|
|
|
|
|
|
class PiecewiseLinearNoiseCond(BaseNoiseCond): |
|
def setup(self): |
|
self.x = None |
|
self.y = None |
|
|
|
def piecewise_linear(self, y, xs, ys): |
|
indices = (len(xs)-2) - torch.searchsorted(ys.flip(dims=(-1,))[:-2], y) |
|
x_min, x_max = xs[indices], xs[indices+1] |
|
y_min, y_max = ys[indices], ys[indices+1] |
|
x = x_min + (x_max - x_min) * (y - y_min) / (y_max - y_min) |
|
return x |
|
|
|
def cond(self, logSNR): |
|
var = logSNR.sigmoid() |
|
t = self.piecewise_linear(var, self.x.to(var.device), self.y.to(var.device)) |
|
return t |
|
|
|
class StableDiffusionNoiseCond(PiecewiseLinearNoiseCond): |
|
def setup(self, linear_range=[0.00085, 0.012], total_steps=1000): |
|
self.total_steps = total_steps |
|
linear_range_sqrt = [r**0.5 for r in linear_range] |
|
self.x = torch.linspace(0, 1, total_steps+1) |
|
|
|
alphas = 1-(linear_range_sqrt[0]*(1-self.x) + linear_range_sqrt[1]*self.x)**2 |
|
self.y = alphas.cumprod(dim=-1) |
|
|
|
def cond(self, logSNR): |
|
return super().cond(logSNR).clamp(0, 1) |
|
|
|
class DiscreteNoiseCond(BaseNoiseCond): |
|
def setup(self, noise_cond, steps=1000, continuous_range=[0, 1]): |
|
self.noise_cond = noise_cond |
|
self.steps = steps |
|
self.continuous_range = continuous_range |
|
|
|
def cond(self, logSNR): |
|
cond = self.noise_cond(logSNR) |
|
cond = (cond-self.continuous_range[0]) / (self.continuous_range[1]-self.continuous_range[0]) |
|
return cond.mul(self.steps).long() |
|
|