|
import torch |
|
|
|
class SimpleSampler(): |
|
def __init__(self, gdf): |
|
self.gdf = gdf |
|
self.current_step = -1 |
|
|
|
def __call__(self, *args, **kwargs): |
|
self.current_step += 1 |
|
return self.step(*args, **kwargs) |
|
|
|
def init_x(self, shape): |
|
return torch.randn(*shape) |
|
|
|
def step(self, x, x0, epsilon, logSNR, logSNR_prev): |
|
raise NotImplementedError("You should override the 'apply' function.") |
|
|
|
class DDIMSampler(SimpleSampler): |
|
def step(self, x, x0, epsilon, logSNR, logSNR_prev, eta=0): |
|
a, b = self.gdf.input_scaler(logSNR) |
|
if len(a.shape) == 1: |
|
a, b = a.view(-1, *[1]*(len(x0.shape)-1)), b.view(-1, *[1]*(len(x0.shape)-1)) |
|
|
|
a_prev, b_prev = self.gdf.input_scaler(logSNR_prev) |
|
if len(a_prev.shape) == 1: |
|
a_prev, b_prev = a_prev.view(-1, *[1]*(len(x0.shape)-1)), b_prev.view(-1, *[1]*(len(x0.shape)-1)) |
|
|
|
sigma_tau = eta * (b_prev**2 / b**2).sqrt() * (1 - a**2 / a_prev**2).sqrt() if eta > 0 else 0 |
|
|
|
x = a_prev * x0 + (b_prev**2 - sigma_tau**2).sqrt() * epsilon + sigma_tau * torch.randn_like(x0) |
|
return x |
|
|
|
class DDPMSampler(DDIMSampler): |
|
def step(self, x, x0, epsilon, logSNR, logSNR_prev, eta=1): |
|
return super().step(x, x0, epsilon, logSNR, logSNR_prev, eta) |
|
|
|
class LCMSampler(SimpleSampler): |
|
def step(self, x, x0, epsilon, logSNR, logSNR_prev): |
|
a_prev, b_prev = self.gdf.input_scaler(logSNR_prev) |
|
if len(a_prev.shape) == 1: |
|
a_prev, b_prev = a_prev.view(-1, *[1]*(len(x0.shape)-1)), b_prev.view(-1, *[1]*(len(x0.shape)-1)) |
|
return x0 * a_prev + torch.randn_like(epsilon) * b_prev |
|
|