|
import torch |
|
from torch import nn |
|
import numpy as np |
|
import math |
|
from .common import AttnBlock, LayerNorm2d, ResBlock, FeedForwardBlock, TimestepBlock |
|
|
|
|
|
|
|
class UpDownBlock2d(nn.Module): |
|
def __init__(self, c_in, c_out, mode, enabled=True): |
|
super().__init__() |
|
assert mode in ['up', 'down'] |
|
interpolation = nn.Upsample(scale_factor=2 if mode == 'up' else 0.5, mode='bilinear', |
|
align_corners=True) if enabled else nn.Identity() |
|
mapping = nn.Conv2d(c_in, c_out, kernel_size=1) |
|
self.blocks = nn.ModuleList([interpolation, mapping] if mode == 'up' else [mapping, interpolation]) |
|
|
|
def forward(self, x): |
|
for block in self.blocks: |
|
x = block(x.float()) |
|
return x |
|
|
|
|
|
class StageC(nn.Module): |
|
def __init__(self, c_in=16, c_out=16, c_r=64, patch_size=1, c_cond=2048, c_hidden=[2048, 2048], nhead=[32, 32], |
|
blocks=[[8, 24], [24, 8]], block_repeat=[[1, 1], [1, 1]], level_config=['CTA', 'CTA'], |
|
c_clip_text=1280, c_clip_text_pooled=1280, c_clip_img=768, c_clip_seq=4, kernel_size=3, |
|
dropout=[0.1, 0.1], self_attn=True, t_conds=['sca', 'crp'], switch_level=[False]): |
|
super().__init__() |
|
self.c_r = c_r |
|
self.t_conds = t_conds |
|
self.c_clip_seq = c_clip_seq |
|
if not isinstance(dropout, list): |
|
dropout = [dropout] * len(c_hidden) |
|
if not isinstance(self_attn, list): |
|
self_attn = [self_attn] * len(c_hidden) |
|
|
|
|
|
self.clip_txt_mapper = nn.Linear(c_clip_text, c_cond) |
|
self.clip_txt_pooled_mapper = nn.Linear(c_clip_text_pooled, c_cond * c_clip_seq) |
|
self.clip_img_mapper = nn.Linear(c_clip_img, c_cond * c_clip_seq) |
|
self.clip_norm = nn.LayerNorm(c_cond, elementwise_affine=False, eps=1e-6) |
|
|
|
self.embedding = nn.Sequential( |
|
nn.PixelUnshuffle(patch_size), |
|
nn.Conv2d(c_in * (patch_size ** 2), c_hidden[0], kernel_size=1), |
|
LayerNorm2d(c_hidden[0], elementwise_affine=False, eps=1e-6) |
|
) |
|
|
|
def get_block(block_type, c_hidden, nhead, c_skip=0, dropout=0, self_attn=True): |
|
if block_type == 'C': |
|
return ResBlock(c_hidden, c_skip, kernel_size=kernel_size, dropout=dropout) |
|
elif block_type == 'A': |
|
return AttnBlock(c_hidden, c_cond, nhead, self_attn=self_attn, dropout=dropout) |
|
elif block_type == 'F': |
|
return FeedForwardBlock(c_hidden, dropout=dropout) |
|
elif block_type == 'T': |
|
return TimestepBlock(c_hidden, c_r, conds=t_conds) |
|
else: |
|
raise Exception(f'Block type {block_type} not supported') |
|
|
|
|
|
|
|
self.down_blocks = nn.ModuleList() |
|
self.down_downscalers = nn.ModuleList() |
|
self.down_repeat_mappers = nn.ModuleList() |
|
for i in range(len(c_hidden)): |
|
if i > 0: |
|
self.down_downscalers.append(nn.Sequential( |
|
LayerNorm2d(c_hidden[i - 1], elementwise_affine=False, eps=1e-6), |
|
UpDownBlock2d(c_hidden[i - 1], c_hidden[i], mode='down', enabled=switch_level[i - 1]) |
|
)) |
|
else: |
|
self.down_downscalers.append(nn.Identity()) |
|
down_block = nn.ModuleList() |
|
for _ in range(blocks[0][i]): |
|
for block_type in level_config[i]: |
|
block = get_block(block_type, c_hidden[i], nhead[i], dropout=dropout[i], self_attn=self_attn[i]) |
|
down_block.append(block) |
|
self.down_blocks.append(down_block) |
|
if block_repeat is not None: |
|
block_repeat_mappers = nn.ModuleList() |
|
for _ in range(block_repeat[0][i] - 1): |
|
block_repeat_mappers.append(nn.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1)) |
|
self.down_repeat_mappers.append(block_repeat_mappers) |
|
|
|
|
|
self.up_blocks = nn.ModuleList() |
|
self.up_upscalers = nn.ModuleList() |
|
self.up_repeat_mappers = nn.ModuleList() |
|
for i in reversed(range(len(c_hidden))): |
|
if i > 0: |
|
self.up_upscalers.append(nn.Sequential( |
|
LayerNorm2d(c_hidden[i], elementwise_affine=False, eps=1e-6), |
|
UpDownBlock2d(c_hidden[i], c_hidden[i - 1], mode='up', enabled=switch_level[i - 1]) |
|
)) |
|
else: |
|
self.up_upscalers.append(nn.Identity()) |
|
up_block = nn.ModuleList() |
|
for j in range(blocks[1][::-1][i]): |
|
for k, block_type in enumerate(level_config[i]): |
|
c_skip = c_hidden[i] if i < len(c_hidden) - 1 and j == k == 0 else 0 |
|
block = get_block(block_type, c_hidden[i], nhead[i], c_skip=c_skip, dropout=dropout[i], |
|
self_attn=self_attn[i]) |
|
up_block.append(block) |
|
self.up_blocks.append(up_block) |
|
if block_repeat is not None: |
|
block_repeat_mappers = nn.ModuleList() |
|
for _ in range(block_repeat[1][::-1][i] - 1): |
|
block_repeat_mappers.append(nn.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1)) |
|
self.up_repeat_mappers.append(block_repeat_mappers) |
|
|
|
|
|
self.clf = nn.Sequential( |
|
LayerNorm2d(c_hidden[0], elementwise_affine=False, eps=1e-6), |
|
nn.Conv2d(c_hidden[0], c_out * (patch_size ** 2), kernel_size=1), |
|
nn.PixelShuffle(patch_size), |
|
) |
|
|
|
|
|
self.apply(self._init_weights) |
|
nn.init.normal_(self.clip_txt_mapper.weight, std=0.02) |
|
nn.init.normal_(self.clip_txt_pooled_mapper.weight, std=0.02) |
|
nn.init.normal_(self.clip_img_mapper.weight, std=0.02) |
|
torch.nn.init.xavier_uniform_(self.embedding[1].weight, 0.02) |
|
nn.init.constant_(self.clf[1].weight, 0) |
|
|
|
|
|
for level_block in self.down_blocks + self.up_blocks: |
|
for block in level_block: |
|
if isinstance(block, ResBlock) or isinstance(block, FeedForwardBlock): |
|
block.channelwise[-1].weight.data *= np.sqrt(1 / sum(blocks[0])) |
|
elif isinstance(block, TimestepBlock): |
|
for layer in block.modules(): |
|
if isinstance(layer, nn.Linear): |
|
nn.init.constant_(layer.weight, 0) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, (nn.Conv2d, nn.Linear)): |
|
torch.nn.init.xavier_uniform_(m.weight) |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def gen_r_embedding(self, r, max_positions=10000): |
|
r = r * max_positions |
|
half_dim = self.c_r // 2 |
|
emb = math.log(max_positions) / (half_dim - 1) |
|
emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp() |
|
emb = r[:, None] * emb[None, :] |
|
emb = torch.cat([emb.sin(), emb.cos()], dim=1) |
|
if self.c_r % 2 == 1: |
|
emb = nn.functional.pad(emb, (0, 1), mode='constant') |
|
return emb |
|
|
|
def gen_c_embeddings(self, clip_txt, clip_txt_pooled, clip_img): |
|
clip_txt = self.clip_txt_mapper(clip_txt) |
|
if len(clip_txt_pooled.shape) == 2: |
|
clip_txt_pool = clip_txt_pooled.unsqueeze(1) |
|
if len(clip_img.shape) == 2: |
|
clip_img = clip_img.unsqueeze(1) |
|
clip_txt_pool = self.clip_txt_pooled_mapper(clip_txt_pooled).view(clip_txt_pooled.size(0), clip_txt_pooled.size(1) * self.c_clip_seq, -1) |
|
clip_img = self.clip_img_mapper(clip_img).view(clip_img.size(0), clip_img.size(1) * self.c_clip_seq, -1) |
|
clip = torch.cat([clip_txt, clip_txt_pool, clip_img], dim=1) |
|
clip = self.clip_norm(clip) |
|
return clip |
|
|
|
def _down_encode(self, x, r_embed, clip, cnet=None): |
|
level_outputs = [] |
|
block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers) |
|
for down_block, downscaler, repmap in block_group: |
|
x = downscaler(x) |
|
for i in range(len(repmap) + 1): |
|
for block in down_block: |
|
if isinstance(block, ResBlock) or ( |
|
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, |
|
ResBlock)): |
|
if cnet is not None: |
|
next_cnet = cnet() |
|
if next_cnet is not None: |
|
x = x + nn.functional.interpolate(next_cnet, size=x.shape[-2:], mode='bilinear', |
|
align_corners=True) |
|
x = block(x) |
|
elif isinstance(block, AttnBlock) or ( |
|
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, |
|
AttnBlock)): |
|
x = block(x, clip) |
|
elif isinstance(block, TimestepBlock) or ( |
|
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, |
|
TimestepBlock)): |
|
x = block(x, r_embed) |
|
else: |
|
x = block(x) |
|
if i < len(repmap): |
|
x = repmap[i](x) |
|
level_outputs.insert(0, x) |
|
return level_outputs |
|
|
|
def _up_decode(self, level_outputs, r_embed, clip, cnet=None): |
|
x = level_outputs[0] |
|
block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers) |
|
for i, (up_block, upscaler, repmap) in enumerate(block_group): |
|
for j in range(len(repmap) + 1): |
|
for k, block in enumerate(up_block): |
|
if isinstance(block, ResBlock) or ( |
|
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, |
|
ResBlock)): |
|
skip = level_outputs[i] if k == 0 and i > 0 else None |
|
if skip is not None and (x.size(-1) != skip.size(-1) or x.size(-2) != skip.size(-2)): |
|
x = torch.nn.functional.interpolate(x.float(), skip.shape[-2:], mode='bilinear', |
|
align_corners=True) |
|
if cnet is not None: |
|
next_cnet = cnet() |
|
if next_cnet is not None: |
|
x = x + nn.functional.interpolate(next_cnet, size=x.shape[-2:], mode='bilinear', |
|
align_corners=True) |
|
x = block(x, skip) |
|
elif isinstance(block, AttnBlock) or ( |
|
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, |
|
AttnBlock)): |
|
x = block(x, clip) |
|
elif isinstance(block, TimestepBlock) or ( |
|
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, |
|
TimestepBlock)): |
|
x = block(x, r_embed) |
|
else: |
|
x = block(x) |
|
if j < len(repmap): |
|
x = repmap[j](x) |
|
x = upscaler(x) |
|
return x |
|
|
|
def forward(self, x, r, clip_text, clip_text_pooled, clip_img, cnet=None, **kwargs): |
|
|
|
r_embed = self.gen_r_embedding(r) |
|
for c in self.t_conds: |
|
t_cond = kwargs.get(c, torch.zeros_like(r)) |
|
r_embed = torch.cat([r_embed, self.gen_r_embedding(t_cond)], dim=1) |
|
clip = self.gen_c_embeddings(clip_text, clip_text_pooled, clip_img) |
|
|
|
|
|
x = self.embedding(x) |
|
if cnet is not None: |
|
cnet = ControlNetDeliverer(cnet) |
|
level_outputs = self._down_encode(x, r_embed, clip, cnet) |
|
x = self._up_decode(level_outputs, r_embed, clip, cnet) |
|
return self.clf(x) |
|
|
|
def update_weights_ema(self, src_model, beta=0.999): |
|
for self_params, src_params in zip(self.parameters(), src_model.parameters()): |
|
self_params.data = self_params.data * beta + src_params.data.clone().to(self_params.device) * (1 - beta) |
|
for self_buffers, src_buffers in zip(self.buffers(), src_model.buffers()): |
|
self_buffers.data = self_buffers.data * beta + src_buffers.data.clone().to(self_buffers.device) * (1 - beta) |
|
|