|
import torch
|
|
import json
|
|
import yaml
|
|
import torchvision
|
|
from torch import nn, optim
|
|
from transformers import AutoTokenizer, CLIPTextModelWithProjection, CLIPVisionModelWithProjection
|
|
from warmup_scheduler import GradualWarmupScheduler
|
|
import torch.multiprocessing as mp
|
|
import numpy as np
|
|
import sys
|
|
|
|
import os
|
|
from dataclasses import dataclass
|
|
from torch.distributed import init_process_group, destroy_process_group, barrier
|
|
from gdf import GDF_dual_fixlrt as GDF
|
|
from gdf import EpsilonTarget, CosineSchedule
|
|
from gdf import VPScaler, CosineTNoiseCond, DDPMSampler, P2LossWeight, AdaptiveLossWeight
|
|
from torchtools.transforms import SmartCrop
|
|
from fractions import Fraction
|
|
from modules.effnet import EfficientNetEncoder
|
|
|
|
from modules.model_4stage_lite import StageC
|
|
|
|
from modules.model_4stage_lite import ResBlock, AttnBlock, TimestepBlock, FeedForwardBlock
|
|
from modules.common_ckpt import GlobalResponseNorm
|
|
from modules.previewer import Previewer
|
|
from core.data import Bucketeer
|
|
from train.base import DataCore, TrainingCore
|
|
from tqdm import tqdm
|
|
from core import WarpCore
|
|
from core.utils import EXPECTED, EXPECTED_TRAIN, load_or_fail
|
|
from torch.distributed.fsdp.wrap import ModuleWrapPolicy, size_based_auto_wrap_policy
|
|
from accelerate import init_empty_weights
|
|
from accelerate.utils import set_module_tensor_to_device
|
|
from contextlib import contextmanager
|
|
from train.dist_core import *
|
|
import glob
|
|
from torch.utils.data import DataLoader, Dataset
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
from torch.utils.data.distributed import DistributedSampler
|
|
from PIL import Image
|
|
from core.utils import EXPECTED, EXPECTED_TRAIN, update_weights_ema, create_folder_if_necessary
|
|
from core.utils import Base
|
|
from modules.common import LayerNorm2d
|
|
import torch.nn.functional as F
|
|
import functools
|
|
import math
|
|
import copy
|
|
import random
|
|
from modules.lora import apply_lora, apply_retoken, LoRA, ReToken
|
|
from modules import ControlNet, ControlNetDeliverer
|
|
from modules import controlnet_filters
|
|
|
|
Image.MAX_IMAGE_PIXELS = None
|
|
torch.manual_seed(8432)
|
|
random.seed(8432)
|
|
np.random.seed(8432)
|
|
|
|
|
|
class Null_Model(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
def forward(self, x):
|
|
pass
|
|
|
|
|
|
def identity(x):
|
|
if isinstance(x, bytes):
|
|
x = x.decode('utf-8')
|
|
return x
|
|
def check_nan_inmodel(model, meta=''):
|
|
for name, param in model.named_parameters():
|
|
if torch.isnan(param).any():
|
|
print(f"nan detected in {name}", meta)
|
|
return True
|
|
print('no nan', meta)
|
|
return False
|
|
|
|
|
|
class WurstCore(TrainingCore, DataCore, WarpCore):
|
|
@dataclass(frozen=True)
|
|
class Config(TrainingCore.Config, DataCore.Config, WarpCore.Config):
|
|
|
|
lr: float = EXPECTED_TRAIN
|
|
warmup_updates: int = EXPECTED_TRAIN
|
|
dtype: str = None
|
|
|
|
|
|
model_version: str = EXPECTED
|
|
clip_image_model_name: str = 'openai/clip-vit-large-patch14'
|
|
clip_text_model_name: str = 'laion/CLIP-ViT-bigG-14-laion2B-39B-b160k'
|
|
|
|
|
|
effnet_checkpoint_path: str = EXPECTED
|
|
previewer_checkpoint_path: str = EXPECTED
|
|
|
|
generator_checkpoint_path: str = None
|
|
controlnet_checkpoint_path: str = EXPECTED
|
|
|
|
|
|
controlnet_blocks: list = EXPECTED
|
|
controlnet_filter: str = EXPECTED
|
|
controlnet_filter_params: dict = None
|
|
controlnet_bottleneck_mode: str = None
|
|
|
|
|
|
|
|
adaptive_loss_weight: str = None
|
|
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
class Data(Base):
|
|
dataset: Dataset = EXPECTED
|
|
dataloader: DataLoader = EXPECTED
|
|
iterator: any = EXPECTED
|
|
sampler: DistributedSampler = EXPECTED
|
|
|
|
@dataclass(frozen=True)
|
|
class Models(TrainingCore.Models, DataCore.Models, WarpCore.Models):
|
|
effnet: nn.Module = EXPECTED
|
|
previewer: nn.Module = EXPECTED
|
|
train_norm: nn.Module = EXPECTED
|
|
train_norm_ema: nn.Module = EXPECTED
|
|
controlnet: nn.Module = EXPECTED
|
|
|
|
@dataclass(frozen=True)
|
|
class Schedulers(WarpCore.Schedulers):
|
|
generator: any = None
|
|
|
|
@dataclass(frozen=True)
|
|
class Extras(TrainingCore.Extras, DataCore.Extras, WarpCore.Extras):
|
|
gdf: GDF = EXPECTED
|
|
sampling_configs: dict = EXPECTED
|
|
effnet_preprocess: torchvision.transforms.Compose = EXPECTED
|
|
controlnet_filter: controlnet_filters.BaseFilter = EXPECTED
|
|
|
|
info: TrainingCore.Info
|
|
config: Config
|
|
|
|
def setup_extras_pre(self) -> Extras:
|
|
gdf = GDF(
|
|
schedule=CosineSchedule(clamp_range=[0.0001, 0.9999]),
|
|
input_scaler=VPScaler(), target=EpsilonTarget(),
|
|
noise_cond=CosineTNoiseCond(),
|
|
loss_weight=AdaptiveLossWeight() if self.config.adaptive_loss_weight is True else P2LossWeight(),
|
|
)
|
|
sampling_configs = {"cfg": 5, "sampler": DDPMSampler(gdf), "shift": 1, "timesteps": 20}
|
|
|
|
if self.info.adaptive_loss is not None:
|
|
gdf.loss_weight.bucket_ranges = torch.tensor(self.info.adaptive_loss['bucket_ranges'])
|
|
gdf.loss_weight.bucket_losses = torch.tensor(self.info.adaptive_loss['bucket_losses'])
|
|
|
|
effnet_preprocess = torchvision.transforms.Compose([
|
|
torchvision.transforms.Normalize(
|
|
mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)
|
|
)
|
|
])
|
|
|
|
clip_preprocess = torchvision.transforms.Compose([
|
|
torchvision.transforms.Resize(224, interpolation=torchvision.transforms.InterpolationMode.BICUBIC),
|
|
torchvision.transforms.CenterCrop(224),
|
|
torchvision.transforms.Normalize(
|
|
mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)
|
|
)
|
|
])
|
|
|
|
if self.config.training:
|
|
transforms = torchvision.transforms.Compose([
|
|
torchvision.transforms.ToTensor(),
|
|
torchvision.transforms.Resize(self.config.image_size[-1], interpolation=torchvision.transforms.InterpolationMode.BILINEAR, antialias=True),
|
|
SmartCrop(self.config.image_size, randomize_p=0.3, randomize_q=0.2)
|
|
])
|
|
else:
|
|
transforms = None
|
|
controlnet_filter = getattr(controlnet_filters, self.config.controlnet_filter)(
|
|
self.device,
|
|
**(self.config.controlnet_filter_params if self.config.controlnet_filter_params is not None else {})
|
|
)
|
|
|
|
return self.Extras(
|
|
gdf=gdf,
|
|
sampling_configs=sampling_configs,
|
|
transforms=transforms,
|
|
effnet_preprocess=effnet_preprocess,
|
|
clip_preprocess=clip_preprocess,
|
|
controlnet_filter=controlnet_filter
|
|
)
|
|
def get_cnet(self, batch: dict, models: Models, extras: Extras, cnet_input=None, target_size=None, **kwargs):
|
|
images = batch['images']
|
|
if target_size is not None:
|
|
images = Image.resize(images, target_size)
|
|
with torch.no_grad():
|
|
if cnet_input is None:
|
|
cnet_input = extras.controlnet_filter(images, **kwargs)
|
|
if isinstance(cnet_input, tuple):
|
|
cnet_input, cnet_input_preview = cnet_input
|
|
else:
|
|
cnet_input_preview = cnet_input
|
|
cnet_input, cnet_input_preview = cnet_input.to(self.device), cnet_input_preview.to(self.device)
|
|
cnet = models.controlnet(cnet_input)
|
|
return cnet, cnet_input_preview
|
|
|
|
def get_conditions(self, batch: dict, models: Models, extras: Extras, is_eval=False, is_unconditional=False,
|
|
eval_image_embeds=False, return_fields=None):
|
|
conditions = super().get_conditions(
|
|
batch, models, extras, is_eval, is_unconditional,
|
|
eval_image_embeds, return_fields=return_fields or ['clip_text', 'clip_text_pooled', 'clip_img']
|
|
)
|
|
return conditions
|
|
|
|
def setup_models(self, extras: Extras) -> Models:
|
|
|
|
|
|
dtype = getattr(torch, self.config.dtype) if self.config.dtype else torch.bfloat16
|
|
|
|
|
|
effnet = EfficientNetEncoder()
|
|
effnet_checkpoint = load_or_fail(self.config.effnet_checkpoint_path)
|
|
effnet.load_state_dict(effnet_checkpoint if 'state_dict' not in effnet_checkpoint else effnet_checkpoint['state_dict'])
|
|
effnet.eval().requires_grad_(False).to(self.device)
|
|
del effnet_checkpoint
|
|
|
|
|
|
previewer = Previewer()
|
|
previewer_checkpoint = load_or_fail(self.config.previewer_checkpoint_path)
|
|
previewer.load_state_dict(previewer_checkpoint if 'state_dict' not in previewer_checkpoint else previewer_checkpoint['state_dict'])
|
|
previewer.eval().requires_grad_(False).to(self.device)
|
|
del previewer_checkpoint
|
|
|
|
@contextmanager
|
|
def dummy_context():
|
|
yield None
|
|
|
|
loading_context = dummy_context if self.config.training else init_empty_weights
|
|
|
|
|
|
with loading_context():
|
|
generator_ema = None
|
|
if self.config.model_version == '3.6B':
|
|
generator = StageC()
|
|
if self.config.ema_start_iters is not None:
|
|
generator_ema = StageC()
|
|
elif self.config.model_version == '1B':
|
|
|
|
generator = StageC(c_cond=1536, c_hidden=[1536, 1536], nhead=[24, 24], blocks=[[4, 12], [12, 4]])
|
|
|
|
if self.config.ema_start_iters is not None and self.config.training:
|
|
generator_ema = StageC(c_cond=1536, c_hidden=[1536, 1536], nhead=[24, 24], blocks=[[4, 12], [12, 4]])
|
|
else:
|
|
raise ValueError(f"Unknown model version {self.config.model_version}")
|
|
|
|
|
|
|
|
if loading_context is dummy_context:
|
|
generator.load_state_dict( load_or_fail(self.config.generator_checkpoint_path))
|
|
else:
|
|
for param_name, param in load_or_fail(self.config.generator_checkpoint_path).items():
|
|
set_module_tensor_to_device(generator, param_name, "cpu", value=param)
|
|
|
|
generator._init_extra_parameter()
|
|
|
|
|
|
|
|
|
|
generator = generator.to(torch.bfloat16).to(self.device)
|
|
|
|
train_norm = nn.ModuleList()
|
|
|
|
|
|
cnt_norm = 0
|
|
for mm in generator.modules():
|
|
if isinstance(mm, GlobalResponseNorm):
|
|
|
|
train_norm.append(Null_Model())
|
|
cnt_norm += 1
|
|
|
|
|
|
|
|
|
|
train_norm.append(generator.agg_net)
|
|
train_norm.append(generator.agg_net_up)
|
|
|
|
|
|
|
|
|
|
if os.path.exists(os.path.join(self.config.output_path, self.config.experiment_id, 'train_norm.safetensors')):
|
|
sdd = torch.load(os.path.join(self.config.output_path, self.config.experiment_id, 'train_norm.safetensors'), map_location='cpu')
|
|
collect_sd = {}
|
|
for k, v in sdd.items():
|
|
collect_sd[k[7:]] = v
|
|
train_norm.load_state_dict(collect_sd, strict=True)
|
|
|
|
|
|
train_norm.to(self.device).train().requires_grad_(True)
|
|
train_norm_ema = copy.deepcopy(train_norm)
|
|
train_norm_ema.to(self.device).eval().requires_grad_(False)
|
|
if generator_ema is not None:
|
|
|
|
generator_ema.load_state_dict(load_or_fail(self.config.generator_checkpoint_path))
|
|
generator_ema._init_extra_parameter()
|
|
|
|
pretrained_pth = os.path.join(self.config.output_path, self.config.experiment_id, 'generator.safetensors')
|
|
if os.path.exists(pretrained_pth):
|
|
print(pretrained_pth, 'exists')
|
|
generator_ema.load_state_dict(torch.load(pretrained_pth, map_location='cpu'))
|
|
|
|
generator_ema.eval().requires_grad_(False)
|
|
|
|
check_nan_inmodel(generator, 'generator')
|
|
|
|
|
|
|
|
if self.config.use_fsdp and self.config.training:
|
|
train_norm = DDP(train_norm, device_ids=[self.device], find_unused_parameters=True)
|
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.config.clip_text_model_name)
|
|
text_model = CLIPTextModelWithProjection.from_pretrained(self.config.clip_text_model_name).requires_grad_(False).to(dtype).to(self.device)
|
|
image_model = CLIPVisionModelWithProjection.from_pretrained(self.config.clip_image_model_name).requires_grad_(False).to(dtype).to(self.device)
|
|
|
|
controlnet = ControlNet(
|
|
c_in=extras.controlnet_filter.num_channels(),
|
|
proj_blocks=self.config.controlnet_blocks,
|
|
bottleneck_mode=self.config.controlnet_bottleneck_mode
|
|
)
|
|
controlnet = controlnet.to(dtype).to(self.device)
|
|
controlnet = self.load_model(controlnet, 'controlnet')
|
|
controlnet.backbone.eval().requires_grad_(True)
|
|
|
|
|
|
return self.Models(
|
|
effnet=effnet, previewer=previewer, train_norm = train_norm,
|
|
generator=generator, generator_ema=generator_ema,
|
|
tokenizer=tokenizer, text_model=text_model, image_model=image_model,
|
|
train_norm_ema=train_norm_ema, controlnet =controlnet
|
|
)
|
|
|
|
def setup_optimizers(self, extras: Extras, models: Models) -> TrainingCore.Optimizers:
|
|
|
|
|
|
|
|
params = []
|
|
params += list(models.train_norm.module.parameters())
|
|
|
|
optimizer = optim.AdamW(params, lr=self.config.lr)
|
|
|
|
return self.Optimizers(generator=optimizer)
|
|
|
|
def ema_update(self, ema_model, source_model, beta):
|
|
for param_src, param_ema in zip(source_model.parameters(), ema_model.parameters()):
|
|
param_ema.data.mul_(beta).add_(param_src.data, alpha = 1 - beta)
|
|
|
|
def sync_ema(self, ema_model):
|
|
print('sync ema', torch.distributed.get_world_size())
|
|
for param in ema_model.parameters():
|
|
torch.distributed.all_reduce(param.data, op=torch.distributed.ReduceOp.SUM)
|
|
param.data /= torch.distributed.get_world_size()
|
|
def setup_optimizers_backup(self, extras: Extras, models: Models) -> TrainingCore.Optimizers:
|
|
|
|
|
|
optimizer = optim.AdamW(
|
|
models.generator.up_blocks.parameters() ,
|
|
lr=self.config.lr)
|
|
optimizer = self.load_optimizer(optimizer, 'generator_optim',
|
|
fsdp_model=models.generator if self.config.use_fsdp else None)
|
|
return self.Optimizers(generator=optimizer)
|
|
|
|
def setup_schedulers(self, extras: Extras, models: Models, optimizers: TrainingCore.Optimizers) -> Schedulers:
|
|
scheduler = GradualWarmupScheduler(optimizers.generator, multiplier=1, total_epoch=self.config.warmup_updates)
|
|
scheduler.last_epoch = self.info.total_steps
|
|
return self.Schedulers(generator=scheduler)
|
|
|
|
def setup_data(self, extras: Extras) -> WarpCore.Data:
|
|
|
|
dataset_path = self.config.webdataset_path
|
|
print('in line 96', dataset_path, type(dataset_path))
|
|
|
|
dataset = mydist_dataset(dataset_path, \
|
|
torchvision.transforms.ToTensor() if self.config.multi_aspect_ratio is not None \
|
|
else extras.transforms)
|
|
|
|
|
|
real_batch_size = self.config.batch_size // (self.world_size * self.config.grad_accum_steps)
|
|
print('in line 119', self.process_id, real_batch_size)
|
|
sampler = DistributedSampler(dataset, rank=self.process_id, num_replicas = self.world_size, shuffle=True)
|
|
dataloader = DataLoader(
|
|
dataset, batch_size=real_batch_size, num_workers=4, pin_memory=True,
|
|
collate_fn=identity if self.config.multi_aspect_ratio is not None else None,
|
|
sampler = sampler
|
|
)
|
|
if self.is_main_node:
|
|
print(f"Training with batch size {self.config.batch_size} ({real_batch_size}/GPU)")
|
|
|
|
if self.config.multi_aspect_ratio is not None:
|
|
aspect_ratios = [float(Fraction(f)) for f in self.config.multi_aspect_ratio]
|
|
dataloader_iterator = Bucketeer(dataloader, density=[ss*ss for ss in self.config.image_size] , factor=32,
|
|
ratios=aspect_ratios, p_random_ratio=self.config.bucketeer_random_ratio,
|
|
interpolate_nearest=False)
|
|
else:
|
|
|
|
dataloader_iterator = iter(dataloader)
|
|
|
|
return self.Data(dataset=dataset, dataloader=dataloader, iterator=dataloader_iterator, sampler=sampler)
|
|
|
|
|
|
|
|
|
|
|
|
def setup_ddp(self, experiment_id, single_gpu=False, rank=0):
|
|
|
|
if not single_gpu:
|
|
local_rank = rank
|
|
process_id = rank
|
|
world_size = get_world_size()
|
|
|
|
self.process_id = process_id
|
|
self.is_main_node = process_id == 0
|
|
self.device = torch.device(local_rank)
|
|
self.world_size = world_size
|
|
|
|
|
|
os.environ['MASTER_ADDR'] = 'localhost'
|
|
os.environ['MASTER_PORT'] = '41443'
|
|
torch.cuda.set_device(local_rank)
|
|
init_process_group(
|
|
backend="nccl",
|
|
rank=local_rank,
|
|
world_size=world_size,
|
|
|
|
)
|
|
print(f"[GPU {process_id}] READY")
|
|
else:
|
|
self.is_main_node = rank == 0
|
|
self.process_id = rank
|
|
self.device = torch.device('cuda:0')
|
|
self.world_size = 1
|
|
print("Running in single thread, DDP not enabled.")
|
|
|
|
def get_target_lr_size(self, ratio, std_size=24):
|
|
w, h = int(std_size / math.sqrt(ratio)), int(std_size * math.sqrt(ratio))
|
|
return (h * 32 , w * 32)
|
|
def forward_pass(self, data: WarpCore.Data, extras: Extras, models: Models):
|
|
|
|
batch = data
|
|
ratio = batch['images'].shape[-2] / batch['images'].shape[-1]
|
|
shape_lr = self.get_target_lr_size(ratio)
|
|
|
|
with torch.no_grad():
|
|
conditions = self.get_conditions(batch, models, extras)
|
|
|
|
latents = self.encode_latents(batch, models, extras)
|
|
latents_lr = self.encode_latents(batch, models, extras,target_size=shape_lr)
|
|
|
|
noised, noise, target, logSNR, noise_cond, loss_weight = extras.gdf.diffuse(latents, shift=1, loss_shift=1)
|
|
noised_lr, noise_lr, target_lr, logSNR_lr, noise_cond_lr, loss_weight_lr = extras.gdf.diffuse(latents_lr, shift=1, loss_shift=1, t=torch.ones(latents.shape[0]).to(latents.device)*0.05, )
|
|
|
|
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
|
|
|
require_cond = True
|
|
|
|
with torch.no_grad():
|
|
_, lr_enc_guide, lr_dec_guide = models.generator(noised_lr, noise_cond_lr, reuire_f=True, **conditions)
|
|
|
|
|
|
pred = models.generator(noised, noise_cond, reuire_f=False, lr_guide=(lr_enc_guide, lr_dec_guide) if require_cond else None , **conditions)
|
|
loss = nn.functional.mse_loss(pred, target, reduction='none').mean(dim=[1, 2, 3])
|
|
|
|
loss_adjusted = (loss * loss_weight ).mean() / self.config.grad_accum_steps
|
|
|
|
if isinstance(extras.gdf.loss_weight, AdaptiveLossWeight):
|
|
extras.gdf.loss_weight.update_buckets(logSNR, loss)
|
|
|
|
return loss, loss_adjusted
|
|
|
|
def backward_pass(self, update, loss_adjusted, models: Models, optimizers: TrainingCore.Optimizers, schedulers: Schedulers):
|
|
|
|
if update:
|
|
|
|
torch.distributed.barrier()
|
|
loss_adjusted.backward()
|
|
|
|
|
|
grad_norm = nn.utils.clip_grad_norm_(models.train_norm.module.parameters(), 1.0)
|
|
|
|
optimizers_dict = optimizers.to_dict()
|
|
for k in optimizers_dict:
|
|
if k != 'training':
|
|
optimizers_dict[k].step()
|
|
schedulers_dict = schedulers.to_dict()
|
|
for k in schedulers_dict:
|
|
if k != 'training':
|
|
schedulers_dict[k].step()
|
|
for k in optimizers_dict:
|
|
if k != 'training':
|
|
optimizers_dict[k].zero_grad(set_to_none=True)
|
|
self.info.total_steps += 1
|
|
else:
|
|
|
|
loss_adjusted.backward()
|
|
|
|
grad_norm = torch.tensor(0.0).to(self.device)
|
|
|
|
return grad_norm
|
|
|
|
def models_to_save(self):
|
|
return ['generator', 'generator_ema', 'trans_inr', 'trans_inr_ema']
|
|
|
|
def encode_latents(self, batch: dict, models: Models, extras: Extras, target_size=None) -> torch.Tensor:
|
|
|
|
images = batch['images'].to(self.device)
|
|
if target_size is not None:
|
|
images = F.interpolate(images, target_size)
|
|
|
|
return models.effnet(extras.effnet_preprocess(images))
|
|
|
|
def decode_latents(self, latents: torch.Tensor, batch: dict, models: Models, extras: Extras) -> torch.Tensor:
|
|
return models.previewer(latents)
|
|
|
|
def __init__(self, rank=0, config_file_path=None, config_dict=None, device="cpu", training=True, world_size=1, ):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.is_main_node = (rank == 0)
|
|
self.config: self.Config = self.setup_config(config_file_path, config_dict, training)
|
|
self.setup_ddp(self.config.experiment_id, single_gpu=world_size <= 1, rank=rank)
|
|
self.info: self.Info = self.setup_info()
|
|
print('in line 292', self.config.experiment_id, rank, world_size <= 1)
|
|
p = [i for i in range( 2 * 768 // 32)]
|
|
p = [num / sum(p) for num in p]
|
|
self.rand_pro = p
|
|
self.res_list = [o for o in range(800, 2336, 32)]
|
|
|
|
|
|
|
|
|
|
def __call__(self, single_gpu=False):
|
|
|
|
|
|
if self.config.allow_tf32:
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
torch.backends.cudnn.allow_tf32 = True
|
|
|
|
if self.is_main_node:
|
|
print()
|
|
print("**STARTIG JOB WITH CONFIG:**")
|
|
print(yaml.dump(self.config.to_dict(), default_flow_style=False))
|
|
print("------------------------------------")
|
|
print()
|
|
print("**INFO:**")
|
|
print(yaml.dump(vars(self.info), default_flow_style=False))
|
|
print("------------------------------------")
|
|
print()
|
|
print('in line 308', self.is_main_node, self.is_main_node, self.process_id, self.device )
|
|
|
|
extras = self.setup_extras_pre()
|
|
assert extras is not None, "setup_extras_pre() must return a DTO"
|
|
|
|
|
|
|
|
data = self.setup_data(extras)
|
|
assert data is not None, "setup_data() must return a DTO"
|
|
if self.is_main_node:
|
|
print("**DATA:**")
|
|
print(yaml.dump({k:type(v).__name__ for k, v in data.to_dict().items()}, default_flow_style=False))
|
|
print("------------------------------------")
|
|
print()
|
|
|
|
models = self.setup_models(extras)
|
|
assert models is not None, "setup_models() must return a DTO"
|
|
if self.is_main_node:
|
|
print("**MODELS:**")
|
|
print(yaml.dump({
|
|
k:f"{type(v).__name__} - {f'trainable params {sum(p.numel() for p in v.parameters() if p.requires_grad)}' if isinstance(v, nn.Module) else 'Not a nn.Module'}" for k, v in models.to_dict().items()
|
|
}, default_flow_style=False))
|
|
print("------------------------------------")
|
|
print()
|
|
|
|
|
|
|
|
optimizers = self.setup_optimizers(extras, models)
|
|
assert optimizers is not None, "setup_optimizers() must return a DTO"
|
|
if self.is_main_node:
|
|
print("**OPTIMIZERS:**")
|
|
print(yaml.dump({k:type(v).__name__ for k, v in optimizers.to_dict().items()}, default_flow_style=False))
|
|
print("------------------------------------")
|
|
print()
|
|
|
|
schedulers = self.setup_schedulers(extras, models, optimizers)
|
|
assert schedulers is not None, "setup_schedulers() must return a DTO"
|
|
if self.is_main_node:
|
|
print("**SCHEDULERS:**")
|
|
print(yaml.dump({k:type(v).__name__ for k, v in schedulers.to_dict().items()}, default_flow_style=False))
|
|
print("------------------------------------")
|
|
print()
|
|
|
|
post_extras =self.setup_extras_post(extras, models, optimizers, schedulers)
|
|
assert post_extras is not None, "setup_extras_post() must return a DTO"
|
|
extras = self.Extras.from_dict({ **extras.to_dict(),**post_extras.to_dict() })
|
|
if self.is_main_node:
|
|
print("**EXTRAS:**")
|
|
print(yaml.dump({k:f"{v}" for k, v in extras.to_dict().items()}, default_flow_style=False))
|
|
print("------------------------------------")
|
|
print()
|
|
|
|
|
|
|
|
if self.is_main_node:
|
|
print("**TRAINING STARTING...**")
|
|
self.train(data, extras, models, optimizers, schedulers)
|
|
|
|
if single_gpu is False:
|
|
barrier()
|
|
destroy_process_group()
|
|
if self.is_main_node:
|
|
print()
|
|
print("------------------------------------")
|
|
print()
|
|
print("**TRAINING COMPLETE**")
|
|
if self.config.wandb_project is not None:
|
|
wandb.alert(title=f"Training {self.info.wandb_run_id} finished", text=f"Training {self.info.wandb_run_id} finished")
|
|
|
|
|
|
def train(self, data: WarpCore.Data, extras: WarpCore.Extras, models: Models, optimizers: TrainingCore.Optimizers,
|
|
schedulers: WarpCore.Schedulers):
|
|
start_iter = self.info.iter + 1
|
|
max_iters = self.config.updates * self.config.grad_accum_steps
|
|
if self.is_main_node:
|
|
print(f"STARTING AT STEP: {start_iter}/{max_iters}")
|
|
|
|
|
|
if self.is_main_node:
|
|
create_folder_if_necessary(f'{self.config.output_path}/{self.config.experiment_id}/')
|
|
if 'generator' in self.models_to_save():
|
|
models.generator.train()
|
|
|
|
iter_cnt = 0
|
|
epoch_cnt = 0
|
|
models.train_norm.train()
|
|
while True:
|
|
epoch_cnt += 1
|
|
if self.world_size > 1:
|
|
print('sampler set epoch', epoch_cnt)
|
|
data.sampler.set_epoch(epoch_cnt)
|
|
for ggg in range(len(data.dataloader)):
|
|
iter_cnt += 1
|
|
|
|
|
|
|
|
loss, loss_adjusted = self.forward_pass(next(data.iterator), extras, models)
|
|
|
|
|
|
|
|
|
|
grad_norm = self.backward_pass(
|
|
iter_cnt % self.config.grad_accum_steps == 0 or iter_cnt == max_iters, loss_adjusted,
|
|
models, optimizers, schedulers
|
|
)
|
|
|
|
|
|
|
|
self.info.iter = iter_cnt
|
|
|
|
|
|
if iter_cnt % self.config.ema_iters == 0:
|
|
|
|
with torch.no_grad():
|
|
print('in line 890 ema update', self.config.ema_iters, iter_cnt)
|
|
self.ema_update(models.train_norm_ema, models.train_norm, self.config.ema_beta)
|
|
|
|
|
|
|
|
|
|
|
|
self.info.ema_loss = loss.mean().item() if self.info.ema_loss is None else self.info.ema_loss * 0.99 + loss.mean().item() * 0.01
|
|
|
|
|
|
if self.is_main_node and np.isnan(loss.mean().item()) or np.isnan(grad_norm.item()):
|
|
print(f"gggg NaN value encountered in training run {self.info.wandb_run_id}", \
|
|
f"Loss {loss.mean().item()} - Grad Norm {grad_norm.item()}. Run {self.info.wandb_run_id}")
|
|
|
|
if self.is_main_node:
|
|
logs = {
|
|
'loss': self.info.ema_loss,
|
|
'backward_loss': loss_adjusted.mean().item(),
|
|
|
|
'ema_loss': self.info.ema_loss,
|
|
'raw_ori_loss': loss.mean().item(),
|
|
|
|
|
|
|
|
'grad_norm': grad_norm.item(),
|
|
'lr': optimizers.generator.param_groups[0]['lr'] if optimizers.generator is not None else 0,
|
|
'total_steps': self.info.total_steps,
|
|
}
|
|
if iter_cnt % (self.config.save_every) == 0:
|
|
|
|
print(iter_cnt, max_iters, logs, epoch_cnt, )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if iter_cnt == 1 or iter_cnt % (self.config.save_every ) == 0 or iter_cnt == max_iters:
|
|
|
|
|
|
if np.isnan(loss.mean().item()):
|
|
if self.is_main_node and self.config.wandb_project is not None:
|
|
print(f"NaN value encountered in training run {self.info.wandb_run_id}", \
|
|
f"Loss {loss.mean().item()} - Grad Norm {grad_norm.item()}. Run {self.info.wandb_run_id}")
|
|
|
|
else:
|
|
if isinstance(extras.gdf.loss_weight, AdaptiveLossWeight):
|
|
self.info.adaptive_loss = {
|
|
'bucket_ranges': extras.gdf.loss_weight.bucket_ranges.tolist(),
|
|
'bucket_losses': extras.gdf.loss_weight.bucket_losses.tolist(),
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.is_main_node and iter_cnt % (self.config.save_every * self.config.grad_accum_steps) == 0:
|
|
print('save model', iter_cnt, iter_cnt % (self.config.save_every * self.config.grad_accum_steps), self.config.save_every, self.config.grad_accum_steps )
|
|
torch.save(models.train_norm.state_dict(), \
|
|
f'{self.config.output_path}/{self.config.experiment_id}/train_norm.safetensors')
|
|
|
|
|
|
torch.save(models.train_norm_ema.state_dict(), \
|
|
f'{self.config.output_path}/{self.config.experiment_id}/train_norm_ema.safetensors')
|
|
|
|
torch.save(models.train_norm.state_dict(), \
|
|
f'{self.config.output_path}/{self.config.experiment_id}/train_norm_{iter_cnt}.safetensors')
|
|
|
|
|
|
if iter_cnt == 1 or iter_cnt % (self.config.save_every* self.config.grad_accum_steps) == 0 or iter_cnt == max_iters:
|
|
|
|
if self.is_main_node:
|
|
|
|
|
|
self.sample(models, data, extras)
|
|
if False:
|
|
param_changes = {name: (param - initial_params[name]).norm().item() for name, param in models.train_norm.named_parameters()}
|
|
threshold = sorted(param_changes.values(), reverse=True)[int(len(param_changes) * 0.1)]
|
|
important_params = [name for name, change in param_changes.items() if change > threshold]
|
|
print(important_params, threshold, len(param_changes), self.process_id)
|
|
json.dump(important_params, open(f'{self.config.output_path}/{self.config.experiment_id}/param.json', 'w'), indent=4)
|
|
|
|
|
|
if self.info.iter >= max_iters:
|
|
break
|
|
|
|
def sample(self, models: Models, data: WarpCore.Data, extras: Extras):
|
|
|
|
|
|
models.generator.eval()
|
|
models.train_norm.eval()
|
|
with torch.no_grad():
|
|
batch = next(data.iterator)
|
|
ratio = batch['images'].shape[-2] / batch['images'].shape[-1]
|
|
|
|
shape_lr = self.get_target_lr_size(ratio)
|
|
conditions = self.get_conditions(batch, models, extras, is_eval=True, is_unconditional=False, eval_image_embeds=False)
|
|
unconditions = self.get_conditions(batch, models, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False)
|
|
cnet, cnet_input = self.get_cnet(batch, models, extras)
|
|
conditions, unconditions = {**conditions, 'cnet': cnet}, {**unconditions, 'cnet': cnet}
|
|
|
|
latents = self.encode_latents(batch, models, extras)
|
|
latents_lr = self.encode_latents(batch, models, extras, target_size = shape_lr)
|
|
|
|
if self.is_main_node:
|
|
|
|
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
|
|
|
*_, (sampled, _, _, sampled_lr) = extras.gdf.sample(
|
|
models.generator, models.trans_inr, conditions,
|
|
latents.shape, latents_lr.shape,
|
|
unconditions, device=self.device, **extras.sampling_configs
|
|
)
|
|
|
|
|
|
|
|
|
|
sampled_ema = sampled
|
|
sampled_ema_lr = sampled_lr
|
|
|
|
|
|
if self.is_main_node:
|
|
print('sampling results', latents.shape, latents_lr.shape, )
|
|
noised_images = torch.cat(
|
|
[self.decode_latents(latents[i:i + 1].float(), batch, models, extras) for i in range(len(latents))], dim=0)
|
|
|
|
sampled_images = torch.cat(
|
|
[self.decode_latents(sampled[i:i + 1].float(), batch, models, extras) for i in range(len(sampled))], dim=0)
|
|
sampled_images_ema = torch.cat(
|
|
[self.decode_latents(sampled_ema[i:i + 1].float(), batch, models, extras) for i in range(len(sampled_ema))],
|
|
dim=0)
|
|
|
|
noised_images_lr = torch.cat(
|
|
[self.decode_latents(latents_lr[i:i + 1].float(), batch, models, extras) for i in range(len(latents_lr))], dim=0)
|
|
|
|
sampled_images_lr = torch.cat(
|
|
[self.decode_latents(sampled_lr[i:i + 1].float(), batch, models, extras) for i in range(len(sampled_lr))], dim=0)
|
|
sampled_images_ema_lr = torch.cat(
|
|
[self.decode_latents(sampled_ema_lr[i:i + 1].float(), batch, models, extras) for i in range(len(sampled_ema_lr))],
|
|
dim=0)
|
|
|
|
images = batch['images']
|
|
if images.size(-1) != noised_images.size(-1) or images.size(-2) != noised_images.size(-2):
|
|
images = nn.functional.interpolate(images, size=noised_images.shape[-2:], mode='bicubic')
|
|
images_lr = nn.functional.interpolate(images, size=noised_images_lr.shape[-2:], mode='bicubic')
|
|
|
|
collage_img = torch.cat([
|
|
torch.cat([i for i in images.cpu()], dim=-1),
|
|
torch.cat([i for i in noised_images.cpu()], dim=-1),
|
|
torch.cat([i for i in sampled_images.cpu()], dim=-1),
|
|
torch.cat([i for i in sampled_images_ema.cpu()], dim=-1),
|
|
], dim=-2)
|
|
|
|
collage_img_lr = torch.cat([
|
|
torch.cat([i for i in images_lr.cpu()], dim=-1),
|
|
torch.cat([i for i in noised_images_lr.cpu()], dim=-1),
|
|
torch.cat([i for i in sampled_images_lr.cpu()], dim=-1),
|
|
torch.cat([i for i in sampled_images_ema_lr.cpu()], dim=-1),
|
|
], dim=-2)
|
|
|
|
torchvision.utils.save_image(collage_img, f'{self.config.output_path}/{self.config.experiment_id}/{self.info.total_steps:06d}.jpg')
|
|
torchvision.utils.save_image(collage_img_lr, f'{self.config.output_path}/{self.config.experiment_id}/{self.info.total_steps:06d}_lr.jpg')
|
|
|
|
|
|
captions = batch['captions']
|
|
if self.config.wandb_project is not None:
|
|
log_data = [
|
|
[captions[i]] + [wandb.Image(sampled_images[i])] + [wandb.Image(sampled_images_ema[i])] + [
|
|
wandb.Image(images[i])] for i in range(len(images))]
|
|
log_table = wandb.Table(data=log_data, columns=["Captions", "Sampled", "Sampled EMA", "Orig"])
|
|
wandb.log({"Log": log_table})
|
|
|
|
if isinstance(extras.gdf.loss_weight, AdaptiveLossWeight):
|
|
plt.plot(extras.gdf.loss_weight.bucket_ranges, extras.gdf.loss_weight.bucket_losses[:-1])
|
|
plt.ylabel('Raw Loss')
|
|
plt.ylabel('LogSNR')
|
|
wandb.log({"Loss/LogSRN": plt})
|
|
|
|
|
|
models.generator.train()
|
|
models.train_norm.train()
|
|
print('finishe sampling in line 901')
|
|
|
|
|
|
|
|
def sample_fortest(self, models: Models, extras: Extras, hr_shape, lr_shape, batch, eval_image_embeds=False):
|
|
|
|
|
|
models.generator.eval()
|
|
models.trans_inr.eval()
|
|
models.controlnet.eval()
|
|
with torch.no_grad():
|
|
|
|
if self.is_main_node:
|
|
conditions = self.get_conditions(batch, models, extras, is_eval=True, is_unconditional=False, eval_image_embeds=eval_image_embeds)
|
|
unconditions = self.get_conditions(batch, models, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False)
|
|
cnet, cnet_input = self.get_cnet(batch, models, extras, target_size = lr_shape)
|
|
conditions, unconditions = {**conditions, 'cnet': cnet}, {**unconditions, 'cnet': cnet}
|
|
|
|
|
|
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
|
|
|
*_, (sampled, _, _, sampled_lr) = extras.gdf.sample(
|
|
models.generator, models.trans_inr, conditions,
|
|
hr_shape, lr_shape,
|
|
unconditions, device=self.device, **extras.sampling_configs
|
|
)
|
|
|
|
if models.generator_ema is not None:
|
|
|
|
*_, (sampled_ema, _, _, sampled_ema_lr) = extras.gdf.sample(
|
|
models.generator_ema, models.trans_inr_ema, conditions,
|
|
latents.shape, latents_lr.shape,
|
|
unconditions, device=self.device, **extras.sampling_configs
|
|
)
|
|
|
|
else:
|
|
sampled_ema = sampled
|
|
sampled_ema_lr = sampled_lr
|
|
|
|
|
|
|
|
|
|
return sampled, sampled_lr
|
|
def main_worker(rank, cfg):
|
|
print("Launching Script in main worker")
|
|
print('in line 467', rank)
|
|
warpcore = WurstCore(
|
|
config_file_path=cfg, rank=rank, world_size = get_world_size()
|
|
)
|
|
|
|
|
|
|
|
warpcore(get_world_size()==1)
|
|
|
|
if __name__ == '__main__':
|
|
print('launch multi process')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print('in line 481', sys.argv[1] if len(sys.argv) > 1 else None)
|
|
print('in line 481',get_master_ip(), get_world_size() )
|
|
print('in line 484', get_world_size())
|
|
if get_master_ip() == "127.0.0.1":
|
|
|
|
mp.spawn(main_worker, nprocs=get_world_size(), args=(sys.argv[1] if len(sys.argv) > 1 else None, ))
|
|
else:
|
|
main_worker(0, sys.argv[1] if len(sys.argv) > 1 else None, )
|
|
|